- Difficulty: Easy
Question
We have an array A
of integers, and an array queries
of queries.
For the i
-th query val = queries[i][0], index = queries[i][1]
, we add val
to A[index]
. Then, the answer to the i
-th query is the sum of the even values of A
.
(Here, the given index = queries[i][1]
is a 0-based index, and each query permanently modifies the array A
.)
Return the answer to all queries. Your answer
array should have the answer[i]
as the answer to the i
-th query.
Example 1:
Input: A = [1, 2, 3, 4], queries = [[1, 0], [-3, 1], [-4, 0], [2, 3]]
Output: [8, 6, 2, 4]
Explanation:
At the beginning, the array is [1, 2, 3, 4]
After adding 1 to A[0], the array is [2, 2, 3, 4], and the sum of even values is 2 + 2 + 4 = 8.
After adding -3 to A[1], the array is [2, -1, 3, 4], and the sum of even values is 2 + 4 = 6.
After adding -4 to A[0], the array is [-2, -1, 3, 4], and the sum of even values is -2 + 4 = 2.
After adding 2 to A[3], the array is [-2, -1, 3, 6], and the sum of even values is -2 + 6 = 4.
Note:
1 <= A.length <= 10000
-10000 <= A[i] <= 10000
1 <= queries.length <= 10000
-10000 <= queries[i][0] <= 10000
0 <= queries[i][1] < A.length
Related Topics
Array
Solution
- 求出原数组中的偶数和
- 对于每一个查询,对于数组元素
A[queries[i][1]]
的影响,按以下四种情况处理:- 之前为奇数,之后为奇数:无需操作;
- 之前为奇数,之后为偶数:在原偶数和的基础上加上这个新增的偶数;
- 之前为偶数,之后为奇数:在原偶数和的基础上去掉这个之前的偶数;
- 之前为偶数,之后为奇数:在原偶数和的基础上加上一个变化量(可能为正,也可能为负);
将每次查询得到的偶数和放入结果数组中即为所求。
public class Solution
{
public int[] SumEvenAfterQueries(int[] A, int[][] queries)
{
int[] ret = new int[queries.GetLength(0)];
int sum = (from x in A where x % 2 == 0 select x).Sum();
for(int i = 0; i < queries.GetLength(0); i++)
{
int before = A[queries[i][1]];
A[queries[i][1]] += queries[i][0];
if(before % 2 == 0)
{
if(A[queries[i][1]] % 2 == 0)
{
int delta = A[queries[i][1]] - before;
sum += delta;
}
else
{
sum -= before;
}
}
else
{
if(A[queries[i][1]] % 2 == 0)
{
sum += A[queries[i][1]];
}
else
{
// no operation
}
}
ret[i] = sum;
}
return ret;
}
}
原文地址:https://www.cnblogs.com/Downstream-1998/p/10351115.html
时间: 2024-10-16 09:51:33