jieba库的使用: (1) jieba库是一款优秀的 Python 第三方中文分词库,jieba 支持三种分词模式:精确模式.全模式和搜索引擎模式,下面是三种模式的特点. 精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析 全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据 搜索引擎模式:在精确模式的基础上,对长词再次进行切分. (2).jieba库常用函数 函数 描述 jieba.lcut(s) 精确模式,返回一个列表类型的分词结果>>>jieb
jieba库的使用: (1) jieba库是一款优秀的 Python 第三方中文分词库,jieba 支持三种分词模式:精确模式.全模式和搜索引擎模式,下面是三种模式的特点. 精确模式:试图将语句最精确的切分,不存在冗余数据,适合做文本分析 全模式:将语句中所有可能是词的词语都切分出来,速度很快,但是存在冗余数据 搜索引擎模式:在精确模式的基础上,对长词再次进行切分. # -*- coding: utf-8 -*- import jieba seg_str = "好好学习,天天向上."
一.安装jieba库 :\>pip install jieba #或者 pip3 install jieba 二.jieba库解析 jieba库主要提供提供分词功能,可以辅助自定义分词词典. jieba库中包含的主要函数如下: jieba.cut(s) 精确模式,返回一个可迭代的数据类型 jieba.cut(s,cut_all=True)
互联网爬虫是一个很有意思的技术,借由爬虫,我们可以做到很多好玩的事情--这其中就包括爬取评论. 词云就是个更好玩的技术,通过技术方法分析词语出现频率,生成可视化的图形,将文字内容用图形呈现,想想就很意思. 这次,我们就试着把这两个技术结合起来吧. 前言 网易云音乐一直是我向往的"神坛",听音乐看到走心的评论的那一刻,高山流水.于是今天来抓取一下歌曲的热门评论.并做成词云来展示,看看相对于这首歌最让人有感受的评论内容是什么. 做成词云的好处就是直观以及美观, 其他的我也想不出来有什么了.
1. 分析 构建词云需要具备: 原料即文章等内容 将内容进行分词 将分词后的内容利用构建词云的工具进行构建 保存成图片 2. 需要的主要模块 jieba 中文分词 wordcloud 构建词云 3. 模块原理 wordcloud的实现原理 文本预处理 词频统计 将高频词以图片形式进行彩色渲染 jieba的实现原理 进行中文分词(有多种模式)[详情] 4. 英文词云 英文分词和构建词云只需要wordcloud模块 具体实现如下: 1 from wordcloud import WordCloud
bilibili弹幕词云 美国历史词云 结巴分词 import jieba txt=" **** " 精确模式: 全模式: 搜索模式: res = jieba.cut(txt) res =jieba.cut(txt ,cut_all=True)
QQ的聊天记录可以通过消息管理器,选中联系人,右键导出为 .txt 格式.由于是中文,需要分词,本文的分词工具采用的是 jieba 分词. 不知道这个“福”能不能扫出来. 假设你已经导出与某人的聊天记录,接下来需要先过滤再分词生成词云. 1. 过滤掉图片和表情,以及聊天记录的时间和qq名称 newtext = [] for word in open('lr.txt', 'r', encoding='utf-8'): tmp = word[0:4] if (tmp == "2019" o
接上一章,抓取京东评论区内容. url='https://club.jd.com/comment/productPageComments.action?callback=fetchJSON_comment98vv399&productId=4560435&score=0&sortType=5&page=0&pageSize=10&isShadowSku=0&fold=1' 重点是productId--产品id.page--页码.pageSize:指定
中文分词的优秀库. 安装:pip install jieba 主要有三种模式,但是最主要有一个函数 模式:精确模式:把文本精确的切分开,不存在冗余单词 全模式:把文本中所有可能的词语都扫描出来,有冗余 搜索引擎模式:在精确模式上,对长词再次切分 函数:jieba.lcut(str):精确模式,返回一个列表 jieba.lcut(str,cut_all=True):就变成全模式,存在冗余 jieba.lcut_for_search(str):搜索引擎模式,返回列表,有冗余 jieba.add_wo