大数据技术之_24_电影推荐系统项目_04_推荐系统算法详解

第九章 推荐系统算法详解9.1 常用推荐算法分类9.1.1 基于人口统计学的推荐与用户画像9.1.2 基于内容的推荐与特征方程9.1.3 基于协同过滤的推荐


第九章 推荐系统算法详解

9.1 常用推荐算法分类

9.1.1 基于人口统计学的推荐与用户画像

9.1.2 基于内容的推荐与特征方程

特征按照不同的数据类型分类,有不同的特征处理方法

推荐系统常见反馈数据

基于 UGC 的推荐

TF-IDF算法代码示例

9.1.3 基于协同过滤的推荐

基于近邻的协同过滤的推荐

基于模型的协同过滤的推荐

模型的求解--交叉最小二乘法 + 梯度下降法

LFM--梯度下降法--实现基于模型的协同过滤

原文地址:https://www.cnblogs.com/chenmingjun/p/10884561.html

时间: 2024-10-01 02:10:58

大数据技术之_24_电影推荐系统项目_04_推荐系统算法详解的相关文章

大数据技术之_24_电影推荐系统项目_02_Python 基础语法

第六章 Python 基础语法6.1 Python 综述6.1.1 Python 是什么6.1.2 Python 的发展6.1.3 Python 的特点6.2 Python3 安装6.2.1 Python3 和 Python2 的区别6.2.2 Python3 环境的安装(以 windows 为例)6.2.3 Anaconda(巨蟒) 安装教程(可选)6.3 Python 基本语法6.3.1 编码6.3.2 标识符6.3.3 注释6.3.4 关键字和保留字6.3.5 行和缩进6.3.6 多行语句

基于大数据技术之电视收视率企业项目实战(hadoop+Spark)张长志(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

大数据入门第十七天——storm上游数据源 之kafka详解(一)入门

一.概述 1.kafka是什么 根据标题可以有个概念:kafka是storm的上游数据源之一,也是一对经典的组合,就像郭德纲和于谦 根据官网:http://kafka.apache.org/intro 的解释呢,是这样的: Apache Kafka® is a distributed streaming platform ApacheKafka®是一个分布式流媒体平台 l Apache Kafka是一个开源消息系统,由Scala写成.是由Apache软件基金会开发的一个开源消息系统项目. l K

大数据入门第十六天——流式计算之storm详解(二)常用命令

一.常用命令 1.提交命令 提交任务命令格式:storm jar [jar路径] [拓扑包名.拓扑类名] [拓扑名称] torm jar examples/storm-starter/storm-starter-topologies-0.9.6.jar storm.starter.WordCountTopology wordcount 原文地址:https://www.cnblogs.com/jiangbei/p/8513989.html

大数据入门第十七天——storm上游数据源 之kafka详解(二)常用命令

一.kafka常用命令 1.创建topic bin/kafka-topics.sh --create --topic topic_1 --partitions 4 --replication-factor 2 --zookeeper mini1:2181 // 如果配置了PATH可以省略相关命令路径,相关命令参数暂不深入,字面意思也可以大概推断.后续给出完整参数参考. 2.查看所有topic bin/kafka-topics.sh --list --zookeeper mini1:2181 3.

基于大数据技术推荐系统算法案例实战视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

中华石杉 Spark大型项目实战:电商用户行为分析大数据平台138讲视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

大数据实时流统计视频教程(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

下载基于大数据技术推荐系统实战教程(Spark ML Spark Streaming Kafka Hadoop Mahout Flume Sqoop Redis)

地址:http://pan.baidu.com/s/1c2tOtwc  密码:yn2r 82课高清完整版,转一播放码. 互联网行业是大数据应用最前沿的阵地,目前主流的大数据技术,包括 hadoop,spark等,全部来自于一线互联网公司.从应用角度讲,大数据在互联网领域主要有三类应用:搜索引擎(比如百度,谷歌等),广告系统(比如百度凤巢,阿里妈妈等)和推荐系统(比如阿里巴巴天猫推荐,优酷视频推荐等). 本次培训以商业实战项目作为驱动来学习大数据技术在推荐系统项目中的应用.使得学员能够亲身体会大数