吴裕雄 python 机器学习——模型选择回归问题性能度量

from sklearn.metrics import mean_absolute_error,mean_squared_error

#模型选择回归问题性能度量mean_absolute_error模型
def test_mean_absolute_error():
    y_true=[1,1,1,1,1,2,2,2,0,0]
    y_pred=[0,0,0,1,1,1,0,0,0,0]
    print("Mean Absolute Error:",mean_absolute_error(y_true,y_pred))

#调用test_mean_absolute_error()
test_mean_absolute_error()

#模型选择回归问题性能度量mean_squared_error模型
def test_mean_squared_error():
    y_true=[1,1,1,1,1,2,2,2,0,0]
    y_pred=[0,0,0,1,1,1,0,0,0,0]
    print("Mean Absolute Error:",mean_absolute_error(y_true,y_pred))
    print("Mean Square Error:",mean_squared_error(y_true,y_pred))

#调用test_mean_squared_error()
test_mean_squared_error()

原文地址:https://www.cnblogs.com/tszr/p/10802357.html

时间: 2024-11-11 19:19:13

吴裕雄 python 机器学习——模型选择回归问题性能度量的相关文章

吴裕雄 python 机器学习——模型选择分类问题性能度量

import numpy as np import matplotlib.pyplot as plt from sklearn.svm import SVC from sklearn.datasets import load_iris from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier from sklearn.model_selection imp

吴裕雄 python 机器学习——模型选择参数优化随机搜索寻优RandomizedSearchCV模型

import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridS

吴裕雄 python 机器学习——模型选择参数优化暴力搜索寻优GridSearchCV模型

import scipy from sklearn.datasets import load_digits from sklearn.metrics import classification_report from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.model_selection import GridS

吴裕雄 python 机器学习——模型选择损失函数模型

from sklearn.metrics import zero_one_loss,log_loss def test_zero_one_loss(): y_true=[1,1,1,1,1,0,0,0,0,0] y_pred=[0,0,0,1,1,1,1,1,0,0] print("zero_one_loss<fraction>:",zero_one_loss(y_true,y_pred,normalize=True)) print("zero_one_loss&

吴裕雄 python 机器学习——集成学习梯度提升决策树GradientBoostingRegressor回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di

吴裕雄 python 机器学习——集成学习随机森林RandomForestRegressor回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' #使用 scikit-learn 自带的一个糖尿病病人的数据集 diabetes = datasets.load_di

吴裕雄 python 机器学习——集成学习AdaBoost算法回归模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets,ensemble from sklearn.model_selection import train_test_split def load_data_classification(): ''' 加载用于分类问题的数据集 ''' # 使用 scikit-learn 自带的 digits 数据集 digits=datasets.load_d

吴裕雄 python 机器学习——支持向量机非线性回归SVR模型

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea

吴裕雄 python 神经网络——TensorFlow实现回归模型训练预测MNIST手写数据集

import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data mnist = input_data.read_data_sets("E:\\MNIST_data\\", one_hot=True) #构建回归模型,输入原始真实值(group truth),采用sotfmax函数拟合,并定义损失函数和优化器 #定义回归模型 x = tf.placeholder(tf.float32,