青蛙的约会 POJ - 1061 (exgcd)

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

就是一个exgcd板题 关键在于推公式exgcd就是用特解求全部解 找出一个特殊情况就好了注意答案为负数的情况
#include <iostream>
#include <cstdio>
#include <sstream>
#include <cstring>
#include <map>
#include <cctype>
#include <set>
#include <vector>
#include <stack>
#include <queue>
#include <algorithm>
#include <cmath>
#include <bitset>
#define rap(i, a, n) for(int i=a; i<=n; i++)
#define rep(i, a, n) for(int i=a; i<n; i++)
#define lap(i, a, n) for(int i=n; i>=a; i--)
#define lep(i, a, n) for(int i=n; i>a; i--)
#define rd(a) scanf("%d", &a)
#define rlld(a) scanf("%lld", &a)
#define rc(a) scanf("%c", &a)
#define rs(a) scanf("%s", a)
#define rb(a) scanf("%lf", &a)
#define rf(a) scanf("%f", &a)
#define pd(a) printf("%d\n", a)
#define plld(a) printf("%lld\n", a)
#define pc(a) printf("%c\n", a)
#define ps(a) printf("%s\n", a)
#define MOD 2018
#define LL long long
#define ULL unsigned long long
#define Pair pair<int, int>
#define mem(a, b) memset(a, b, sizeof(a))
#define _  ios_base::sync_with_stdio(0),cin.tie(0)
//freopen("1.txt", "r", stdin);
using namespace std;
const int maxn = 10010, INF = 0x7fffffff;

LL gcd(LL a, LL b)
{
    return b == 0 ? a : gcd(b, a % b);
}

LL exgcd(LL a, LL b, LL& d, LL& x, LL& y)
{
    if(!b)
    {
        d = a;
        x = 1;
        y = 0;
    }
    else
    {
        exgcd(b, a % b, d, y, x);
        y -= x * (a / b);
    }
}

int main()
{
    LL a, b, d, x, y;
    LL _x, _y, m, n, l;
    cin >> _x >> _y >> m >> n >> l;
    if((_x - _y) % gcd(l, n - m)) return puts("Impossible");
    exgcd(n - m, l, d, x, y);
    x *= (_x - _y) / d;
    x = (x % l + l) % l;
    cout << x << endl;

    return 0;
}

原文地址:https://www.cnblogs.com/WTSRUVF/p/10281418.html

时间: 2024-10-18 09:25:39

青蛙的约会 POJ - 1061 (exgcd)的相关文章

AC日记——青蛙的约会 poj 1061

青蛙的约会 POJ - 1061 思路: 扩展欧几里得: 设青蛙们要跳k步,我们可以得出式子 m*k+a≡n*k+b(mod l) 式子变形得到 m*k+a-n*k-b=t*l (m-n)*k-t*l=b-a 然后,exgcd函数求出k 然后输出刚刚大于0的k即可 来,上代码: #include <cmath> #include <cstdio> #include <cstring> #include <iostream> using namespace s

青蛙的约会 - poj 1061(扩展欧几里得)

分析:这个东西在数论里面应该叫做不定方程式,可以搜一下,有很精彩的证明,先求出来方程式的一组特解,然后用这组特解来求通解,但是求出来特解之后怎么求这些解里面的最小非负x值?我们知道 x = x0 + bt, 假设x=0, 也就是最小值, 那么 t = x0/(-b), x0+x0/(-b)*b就是最小值了,当然如果结果是负的加上一个b即可. 代码如下: ========================================================================

青蛙的旅行 poj 1061

// 参考->青蛙的约会 exgcd解同余方程 定理证明->点我 1 /* 2 * @Promlem: 3 * @Time Limit: ms 4 * @Memory Limit: k 5 * @Author: pupil-XJ 6 * @Date: 2019-10-20 17:19:56 7 * @LastEditTime: 2019-10-20 18:52:09 8 */ 9 #include<cstdio> 10 #include<cstring> 11 #inc

POJ - 1061 青蛙的约会 (扩展欧几里得算法)

Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的.但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的.为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面. 我们把这

POJ 1061 青蛙的约会【拓展欧几里得】

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 97776   Accepted: 18462 链接:http://poj.org/problem?id=1061 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位

POJ 1061 青蛙的约会 (扩展欧几里得)

原式 ax + by = c    =>  ax1 + by1 = gcd(a,b); a,b,c为任意整数,d = gcd(a,b),则  ax1 + by1 = d 的一组解是(x1,y1),c是gcd(a,b)的倍数时,其中的一组解为(x1*c/d,y1*c/d);c不是gcd(a,b)的倍数时,无解 青蛙的约会,就是一道例题 按照题意很容易列举出等式:(x+ms) - (y+ns) = k*l;  (k=1.....n)   变形到  扩展欧几里得公式  即可: #include <i

POJ 1061青蛙的约会(扩展欧几里德)

对欧几里德不太熟悉,参考了网上的一些讲解又学习了一下 利用扩展欧几里德算法求线性方程的一般过程:a*x + b*y = m 令a1 = a/gcd(a,b) b1 = b/gcd(a,b) m1 = m/gcd(a,b) a*x + b*y = m两边同除以m1a*x/m1 + b*y/m1 = m/m1 = gcd(a,b)设x1 = x/m1 ,y1 = y/m1 则原式变为a*x1 + b*y1 = gcd(a,b)若求出这个方程中的x1,y1,那么x = x1*m1, y = y1*m1

ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰

[ACM] POJ 1061青蛙的约会(扩展欧几里得求模线性方程)

青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 89206   Accepted: 15926 Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面.它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止.可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置.不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能