安装caffe(opencv3+anaconda3)

目录

  • 仅安装CPU版本的caffe

    • 1.下载相关的依赖包:
    • 2.安装opencv3
    • 3.安装caffe
  • 参考文献:

仅安装CPU版本的caffe

1.下载相关的依赖包:

sudo apt-get install libprotobuf-dev libleveldb-dev libsnappy-dev libopencv-dev libhdf5-serial-dev protobuf-compiler

sudo apt-get install --no-install-recommends libboost-all-dev

sudo apt-get install libopenblas-dev liblapack-dev libatlas-base-dev

sudo apt-get install libgflags-dev libgoogle-glog-dev liblmdb-dev

sudo apt-get install git cmake build-essential

2.安装opencv3

进入官网 : http://opencv.org/releases.html , 选择 3.4.1 版本的 source,并下载,解压到你要安装的位置.如/home/whb/Documents/PC/opencv/opencv-3.4.4,进入该目录。

#创建build文件
mkdir build
cd build
cmake -D CMAKE_BUILD_TYPE=Release  -D CMAKE_INSTALL_PREFIX=/usr/local ..
make -j8 #编译
make install #安装

如以上步骤不出错,通过以下命令检查opencv是否安装成功

opencv_version

3.安装caffe

3.1 下载caffe

git clone https://github.com/BVLC/caffe.git

进入caffe目录

3.2 修改Makefile.config文件

cp Makefile.config.example Makefile.config
## Refer to http://caffe.berkeleyvision.org/installation.html
# Contributions simplifying and improving our build system are welcome!

# cuDNN acceleration switch (uncomment to build with cuDNN).
# USE_CUDNN := 1

# CPU-only switch (uncomment to build without GPU support).
CPU_ONLY := 1 ##关键1
# uncomment to disable IO dependencies and corresponding data layers
# USE_OPENCV := 0
# USE_LEVELDB := 0
# USE_LMDB := 0
# This code is taken from https://github.com/sh1r0/caffe-android-lib
# USE_HDF5 := 0

# uncomment to allow MDB_NOLOCK when reading LMDB files (only if necessary)
#   You should not set this flag if you will be reading LMDBs with any
#   possibility of simultaneous read and write
# ALLOW_LMDB_NOLOCK := 1

# Uncomment if you‘re using OpenCV 3
OPENCV_VERSION := 3 ##关键2

# To customize your choice of compiler, uncomment and set the following.
# N.B. the default for Linux is g++ and the default for OSX is clang++
# CUSTOM_CXX := g++

# CUDA directory contains bin/ and lib/ directories that we need.
CUDA_DIR := /usr/local/cuda
# On Ubuntu 14.04, if cuda tools are installed via
# "sudo apt-get install nvidia-cuda-toolkit" then use this instead:
# CUDA_DIR := /usr

# CUDA architecture setting: going with all of them.
# For CUDA < 6.0, comment the *_50 through *_61 lines for compatibility.
# For CUDA < 8.0, comment the *_60 and *_61 lines for compatibility.
# For CUDA >= 9.0, comment the *_20 and *_21 lines for compatibility.
CUDA_ARCH := -gencode arch=compute_20,code=sm_20         -gencode arch=compute_20,code=sm_21         -gencode arch=compute_30,code=sm_30         -gencode arch=compute_35,code=sm_35         -gencode arch=compute_50,code=sm_50         -gencode arch=compute_52,code=sm_52         -gencode arch=compute_60,code=sm_60         -gencode arch=compute_61,code=sm_61         -gencode arch=compute_61,code=compute_61

# BLAS choice:
# atlas for ATLAS (default)
# mkl for MKL
# open for OpenBlas
BLAS := atlas
# Custom (MKL/ATLAS/OpenBLAS) include and lib directories.
# Leave commented to accept the defaults for your choice of BLAS
# (which should work)!
# BLAS_INCLUDE := /path/to/your/blas
# BLAS_LIB := /path/to/your/blas

# Homebrew puts openblas in a directory that is not on the standard search path
# BLAS_INCLUDE := $(shell brew --prefix openblas)/include
# BLAS_LIB := $(shell brew --prefix openblas)/lib

# This is required only if you will compile the matlab interface.
# MATLAB directory should contain the mex binary in /bin.
# MATLAB_DIR := /usr/local
# MATLAB_DIR := /Applications/MATLAB_R2012b.app

# NOTE: this is required only if you will compile the python interface.
# We need to be able to find Python.h and numpy/arrayobject.h.
#PYTHON_INCLUDE := /usr/include/python2.7 #       /usr/lib/python2.7/dist-packages/numpy/core/include
# Anaconda Python distribution is quite popular. Include path:
# Verify anaconda location, sometimes it‘s in root.
ANACONDA_HOME := $(HOME)/anaconda3 ##关键3
PYTHON_INCLUDE := $(ANACONDA_HOME)/include \ ##关键4
        $(ANACONDA_HOME)/include/python3.6m         $(ANACONDA_HOME)/lib/python3.6/site-packages/numpy/core/include

# Uncomment to use Python 3 (default is Python 2)
PYTHON_LIBRARIES := boost_python3 python3.6m ###关键5
# PYTHON_INCLUDE := /usr/include/python3.5m #                 /usr/lib/python3.5/dist-packages/numpy/core/include

# We need to be able to find libpythonX.X.so or .dylib.
#PYTHON_LIB := /usr/lib
PYTHON_LIB := $(ANACONDA_HOME)/lib

# Homebrew installs numpy in a non standard path (keg only)
# PYTHON_INCLUDE += $(dir $(shell python -c ‘import numpy.core; print(numpy.core.__file__)‘))/include
# PYTHON_LIB += $(shell brew --prefix numpy)/lib

# Uncomment to support layers written in Python (will link against Python libs)
# WITH_PYTHON_LAYER := 1

# Whatever else you find you need goes here.
INCLUDE_DIRS := $(PYTHON_INCLUDE) /usr/local/include
LIBRARY_DIRS := $(PYTHON_LIB) /usr/local/lib /usr/lib

# If Homebrew is installed at a non standard location (for example your home directory) and you use it for general dependencies
# INCLUDE_DIRS += $(shell brew --prefix)/include
# LIBRARY_DIRS += $(shell brew --prefix)/lib

# NCCL acceleration switch (uncomment to build with NCCL)
# https://github.com/NVIDIA/nccl (last tested version: v1.2.3-1+cuda8.0)
# USE_NCCL := 1

# Uncomment to use `pkg-config` to specify OpenCV library paths.
# (Usually not necessary -- OpenCV libraries are normally installed in one of the above $LIBRARY_DIRS.)
USE_PKG_CONFIG := 1 ##关键6

# N.B. both build and distribute dirs are cleared on `make clean`
BUILD_DIR := build
DISTRIBUTE_DIR := distribute

# Uncomment for debugging. Does not work on OSX due to https://github.com/BVLC/caffe/issues/171
# DEBUG := 1

# The ID of the GPU that ‘make runtest‘ will use to run unit tests.
TEST_GPUID := 0

# enable pretty build (comment to see full commands)
Q ?= @

共需要修改6个地方,仅安装cpu,配置anaconda3的相关路径,使用opencv3,取消注释USE_PKG_CONFIG=1这一行.

3.3 编译caffe

make all -j8
make test -j8
make runtest -j8

出现,PASSED表示大功告成

3.4 编译pycaffe

修改Makefile文件
PYTHON_LIBRARIES ?= boost_python3 python3.6
重新编译caffe
make clean
make caffe -j8
make test -j8
make runtest -j8
make pycaffe -j8

3.5 测试import caffe

为了使得import caffe成功,需要完成以下2个步骤:

1.将caffe的python路径加入到环境变量中

找到安装caffe的根目录,我这里是home/whb/Documents/PC/caffe,打开bashrc文件

vim /.bashrc 
#加入
export PYTHONPATH=/home/whb/Documents/PC/caffe/python:$PYTHONPATH
#生效
source  ~/.bashrc

2.安装protobuf

 pip install protobuf

大功告成0.0

参考文献:

  1. https://blog.csdn.net/yhaolpz/article/details/71375762
  2. https://blog.csdn.net/muzilinxi90/article/details/53673184
  3. https://blog.csdn.net/yhaolpz/article/details/71375762

原文地址:https://www.cnblogs.com/whb-20160329/p/10256766.html

时间: 2024-10-05 20:38:59

安装caffe(opencv3+anaconda3)的相关文章

Caffe初学者第二部:Ubuntu16.04上安装caffe(CPU)+Matlab2014a+Opencv3的详细过程 (亲测成功, 20180529更新)

这是caffe初学者系列教程的第二部,旨在帮助更多对深度学习感兴趣的同学们!第一部可以参考以下地址: Caffe初学者第一部:Ubuntu14.04上安装caffe(CPU)+Python的详细过程 (亲测成功, 20180524更新) 好啦,开始我们的教程吧! 前言: 之前的第一部教程发布以后,很受欢迎,看样子我的努力没白费,毕竟写博文花了我好几个小时,感谢同学们的支持啦^_^ 亲测教程: 本教程需要准备的文件有:Ubuntu16.04, Opencv3(必要), Matlab2014a. (

anaconda3安装caffe

要使用人脸检测项目中的caffe,因为该项目需要重新编译安装caffe,所以需要搭建一个新的环境,对于Python3.5版本 参考:https://blog.csdn.net/qq_33039859/article/details/80377356 首先创建先的环境 conda create -n caffe python=3.5激活环境source activate caffe cp Makefile.config.example Makefile.config 因为是用anaconda安装所

ubuntu16.04 安装 caffe cuda 相关流程

不多说了,经历了很多莫名其妙的错误最后终于安装好了,直接放安装脚本: #!/bin/bash #安装时要注意有些库可能安装失败以及安装caffe有和protobuf相关错误时可能需要重新对protobuf进行make install cd /home/zw/softwares #需要事先下载对应版本的cuda sudo dpkg -i cuda-repo-ubuntu1604-8-0-local-ga2_8.0.61-1_amd64.deb sudo apt-get update sudo ap

anaconda 安装caffe,cntk,theano-未整理

一,anancona 安装 https://repo.anaconda.com/archive/ conda create -n caffe_gpu -c defaults python=3.6 caffe-gpu conda create -n caffe -c defaults python=3.6 caffe 测试: import caffe python -c "import caffe; print dir(caffe)" 参考:https://blog.csdn.net/w

在Jetson TX2上安装caffe和PyCaffe

参考文章:How to Install Caffe and PyCaffe on Jetson TX2 与参考文章大部分都是相似的,如果不习惯看英文,可以看看我下面的描述 caffe是Nvidia TensorRT最支持的深度学习框架,因此在Jetson TX2上安装caffe很有必要.顺便说一句,下面的安装是支持python3的. 先决条件 在Jetson TX2上完成JetPack-3.1的安装. 构建并安装OpenCV-3.4.0,并确保其在python3下正常工作.参考:在Jetson

【记录】在MAC上安装caffe

---恢复内容开始--- 最近尝试在MAC(OS X 10.11 El Capitan)上安装Caffe 以及Python接口遇到了一些问题但是官方安装教程上并没有提出这些问题的解决办法搜索了很久(主要在于Python接口上) 终于找到了解决办法 其实Caffe的安装分两步:安装依赖+编译源码 首先是安装依赖: [必要依赖]: 官方推荐用homebrew来安装: brew install -vd snappy leveldb gflags glog szip lmdb # 添加science源来

记我安装Caffe的血泪史(2)

不知不觉居然花了一个星期来安装Caffe...真是醉了. 接上一篇blog,本以为编译完cuda,opencv之后问题就差不多了(其实本来是没有什么问题的,但硬是被我搞了一堆事情出来....) 出于对作死的热爱,本人没有选择官方的Caffe进行安装,而是选择了一位韩国大兄弟diy过的Caffe. 然后就是疯狂的报错...一瞬间报错4000行你敢不敢信?多得终端都显示不完...由于我是中文的ubuntu,报错里面还是一堆乱码. 研究了许久没有结果之后我把调试信息的输出改成中文,然后将编译信息输出到

ubuntu14.04 python2.7 安装配置OpenCV3.0

环境:ubuntu14.04  python2.7 内容:安装并配置OpenCV3.0 今天按照OpenCV官网上的步骤装了OpenCV但是,装好之后python提示“No module named cv2” 首先,安装OpenCV的步骤: OpenCV官网的安装步骤:http://docs.opencv.org/doc/tutorials/introduction/linux_install/linux_install.html#linux-installation 1.下载OpenCV:ht

mac安装caffe

http://www.jianshu.com/p/cc16e2977e27 http://blog.csdn.net/q1w2e3r4470/article/details/47000643 http://blog.csdn.net/tracer9/article/details/50455353 http://www.zhimengzhe.com/mac/327058.html http://blog.csdn.net/feitongxunke/article/details/51388212