http://acm.hdu.edu.cn/showproblem.php?pid=4324
Problem Description
Recently, scientists find that there is love between any of two people. For example, between A and B, if A don’t love B, then B must love A, vice versa. And there is no possibility that two people love each other, what a crazy world!
Now, scientists want to know whether or not there is a “Triangle Love” among N people. “Triangle Love” means that among any three people (A,B and C) , A loves B, B loves C and C loves A.
Your problem is writing a program to read the relationship among N people firstly, and return whether or not there is a “Triangle Love”.
Input
The first line contains a single integer t (1 <= t <= 15), the number of test cases.
For each case, the first line contains one integer N (0 < N <= 2000).
In the next N lines contain the adjacency matrix A of the relationship (without spaces). Ai,j = 1 means i-th people loves j-th people, otherwise Ai,j = 0.
It is guaranteed that the given relationship is a tournament, that is, Ai,i= 0, Ai,j ≠ Aj,i(1<=i, j<=n,i≠j).
Output
For each case, output the case number as shown and then print “Yes”, if there is a “Triangle Love” among these N people, otherwise print “No”.
Take the sample output for more details.
Sample Input
2 5 00100 10000 01001 11101 11000 5 01111 00000 01000 01100 01110
Sample Output
Case #1: Yes Case #2: No
/** hdu4324 dfs 题目大意: 判断是否存在点数为3的环。 解题思路: dfs搜索即可,不做标记会TLE,dfs时做标记如果当前点u的下一个点v已经访问过了, 那么就判断dist[u]==dist[[v]+2,成立返回true,否则更新dist[v]=dist[u]+1,继续深搜。 */ #include <stdio.h> #include <string.h> #include <algorithm> #include <iostream> using namespace std; char s[2005][2005]; int n,dist[2005]; struct note { int v,next; } edge[2005*2005]; int head[2005],ip,flag[2005]; void init() { memset(head,-1,sizeof(head)); ip=0; } void addedge(int u,int v) { edge[ip].v=v,edge[ip].next=head[u],head[u]=ip++; } bool dfs(int u) { flag[u]=1; for(int i=head[u]; i!=-1; i=edge[i].next) { int v=edge[i].v; if(flag[v]&&dist[u]==dist[v]+2) { puts("Yes"); return 1; } else if(flag[v]==0) { dist[v]=dist[u]+1; if(dfs(v)) return 1; } } return 0; } int main() { int T,tt=0; scanf("%d",&T); while(T--) { scanf("%d",&n); for(int i=0; i<n; i++) scanf("%s",s[i]); init(); for(int i=0; i<n; i++) { for(int j=0; j<n; j++) { if(s[i][j]=='1') { addedge(i+1,j+1); } } } memset(flag,0,sizeof(flag)); memset(dist,0,sizeof(dist)); int flag1=0; printf("Case #%d: ",++tt); for(int i=1; i<=n; i++) { if(dfs(i)==1) { flag1=1; break; } } if(flag1==0) puts("No"); } return 0; }