背景建模与前景检测

背景建模与前景检测的相关文章

目标检测之vibe---ViBe(Visual Background extractor)背景建模或前景检测

ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网:http://www2.ulg.ac.be/telecom/research/vibe/ 描述: ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少. Code: 算法执行效率测试程序,windows和linux操作系统下的程序和c/c++文件都可以在作者

ViBe(Visual Background extractor)背景建模或前景检测

ViBe算法:ViBe - a powerful technique for background detection and subtraction in video sequences 算法官网:http://www2.ulg.ac.be/telecom/research/vibe/ 描述: ViBe是一种像素级视频背景建模或前景检测的算法,效果优于所熟知的几种算法,对硬件内存占用也少. Code: 算法执行效率测试程序,windows和linux操作系统下的程序和c/c++文件都可以在作者

目标检测中背景建模方法

最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结.      背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved adaptive background m

常见的目标检测中的背景建模方法

Author: JW. ZHOU 2014/6/13 最近一直在做前景检测方面的研究,刚开始主要是做一些工程性的应用,为了解决工程方面的问题,下了不少功夫,也看了不少最近国内外的文章.一直想做个总结,拖着拖着,终究却写成这篇极不成功的总结. 背景建模或前景检测的算法主要有: 1. Single Gaussian (单高斯模型) Real-time tracking of the human body 2. 混合高斯模型(Mixture of Gaussian Model) An improved

学习OpenCV范例(二十四)—ViBe前景检测(二)

最近导师没给什么项目做,所以有那么一点点小时间,于是就研究起了前景检测,既然前景检测有很多种算法,那干脆就把这些模型都学起来吧,以后用到前景检测时至少还有那么几种方法可以选择,上次介绍的是GMM模型,其实GMM模型本身就是一个很不错的模型,现在也很多人在研究,并且做改进,主要是OpenCV有函数调用,用起来非常方便,当我们都在兴高采烈的讨论GMM各种好的时候,B哥不爽了,他说老子是搞前景检测的,怎么可能让你们这么嚣张,而且老子就不按照你那套路来,什么高斯模型,混合高斯模型,我统统不用,就来个简单

[MOC062066]背景建模资料收集整理

一.相关博客 背景建模相关资料收集,各个链接都已给出. 资料,不可能很完整,以后不定期更新. -----------------分割线----------------- 这个哥们总结的很好啊,看完了基本就有一个比较"全面"的认知可.可以侃晕一些外行了,哈哈哈... 千里8848: 背景建模(一) Evaluation of Background Subtraction Techniques for Video Surveillance 背景建模(二)--以像素值为特征的方法(1) 背景

paper 83:前景检测算法_1(codebook和平均背景法)

前景分割中一个非常重要的研究方向就是背景减图法,因为背景减图的方法简单,原理容易被想到,且在智能视频监控领域中,摄像机很多情况下是固定的,且背景也是基本不变或者是缓慢变换的,在这种场合背景减图法的应用驱使了其不少科研人员去研究它. 但是背景减图获得前景图像的方法缺点也很多:比如说光照因素,遮挡因素,动态周期背景,且背景非周期背景,且一般情况下我们考虑的是每个像素点之间独立,这对实际应用留下了很大的隐患. 这一小讲主要是讲简单背景减图法和codebook法. 一.简单背景减图法的工作原理. 在视频

背景建模技术(一):介绍、资源下载、“背景建模库”平台搭建

背景建模技术(一):介绍.资源下载."背景建模库"平台搭建 1.介绍 视频分析与理解是一个非常活跃的研究领域,在这个研究领域(如视频监控.多媒体应用等)中,第一步要做的就是检测场景中运动的目标.而背景建模技术是检测前景最常用的技术之一,具有举足轻重的作用和研究意义. 2.资源下载 BgsLibrary的下载:BgsLibrary库 OpenCV的下载:http://opencv.org/  (推荐下载版本2.4.10) 注:PC默认已经安装VS2010. 3."背景建模库&q

运动目标检测_混合高斯背景建模

1.混合高斯背景建模理论 混合高斯背景建模是基于像素样本统计信息的背景表示方法,利用像素在较长时间内大量样本值的概率密度等统计信息(如模式数量.每个模式的均值和标准差)表示背景,然后使用统计差分(如3σ原则)进行目标像素判断,可以对复杂动态背景进行建模,计算量较大. 在混合高斯背景模型中,认为像素之间的颜色信息互不相关,对各像素点的处理都是相互独立的.对于视频图像中的每一个像素点,其值在序列图像中的变化可看作是不断产生像素值的随机过程,即用高斯分布来描述每个像素点的颜色呈现规律{单模态(单峰),