Kiki & Little Kiki 2
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 2300 Accepted Submission(s): 1175
Problem Description
There are n lights in a circle numbered from 1 to n. The left of light 1 is light n, and the left of light k (1< k<= n) is the light k-1.At time of 0, some of them turn on, and others turn off.
Change the state of light i (if it‘s on, turn off it; if it is not on, turn on it) at t+1 second (t >= 0), if the left of light i is on !!! Given the initiation state, please find all lights’ state after M second. (2<= n <=
100, 1<= M<= 10^8)
Input
The input contains one or more data sets. The first line of each data set is an integer m indicate the time, the second line will be a string T, only contains ‘0‘ and ‘1‘ , and its length n will not exceed 100. It means all lights in the circle from 1 to n.
If the ith character of T is ‘1‘, it means the light i is on, otherwise the light is off.
Output
For each data set, output all lights‘ state at m seconds in one line. It only contains character ‘0‘ and ‘1.
Sample Input
1 0101111 10 100000001
Sample Output
1111000 001000010
题意:告诉一个01序列表示灯的开关情况,0就是关,1就是开,现在要操作次,如果一个数左边是1就改变这个数的状态,第一个数左边的数是最右边那个数。
分析:最开始第一反应是找循环节,但是直接存起来会MLE,找到后再算会TLE,赛后才知道是举证快速幂。对于每个数,操作时只与当前以及它左边的数有关,跟其他数没有任何关系,于是构造矩阵时,就能想到只有当前位置和它左边位置有关,只有这两个位置的数是1,其他都是0。
#include <iostream> #include <stdio.h> #include <string> #include <cstring> #include <cmath> typedef __int64 ll; using namespace std; struct matrix { int f[102][102]; }s,t; char str[109]; int mp[109][109]; int ss[109]; matrix mul(matrix a,matrix b,int len) { matrix c; memset(c.f,0,sizeof c.f); for(int i=0;i<len;i++) { for(int j=0;j<len;j++) { for(int k=0;k<len;k++) { c.f[i][j]=(c.f[i][j]+a.f[i][k]*b.f[k][j])%2; } } } return c; } matrix fun(matrix a,ll n,int len) { matrix b; for(int i=0;i<len;i++) for(int j=0;j<len;j++) if(i==j) b.f[i][j]=1; else b.f[i][j]=0; while(n) { if(n&1) b=mul(b,a,len); a=mul(a,a,len); n>>=1; } return b; } int main() { ll n; while(~scanf("%I64d",&n)) { scanf("%s",str); int len=strlen(str); memset(s.f,0,sizeof s.f); for(int i=0;i<len;i++)//构造矩阵 if(i==0 || i==len-1) s.f[i][0]=1; for(int j=1;j<len;j++) for(int i=0;i<len;i++) if(i==j || i==j-1) s.f[i][j]=1; for(int i=0;i<len;i++) ss[i]=str[i]-'0'; t=fun(s, n ,len); for(int i=0;i<len;i++) { int ans=0; for(int j=0;j<len;j++) { ans=(ans+ss[j]*t.f[j][i])%2; } printf("%d",ans); } puts(""); } return 0; }
版权声明:本文为博主原创文章,未经博主允许不得转载。