剧情提要:
[机器小伟]在[工程师阿伟]的陪同下进入了结丹初期的修炼,
这次要修炼的目标是[函数的应用]。
正剧开始:
星历2016年04月09日 11:38:05, 银河系厄尔斯星球中华帝国江南行省。
[工程师阿伟]正在和[机器小伟]一起研究[函数的应用]。
<span style="font-size:18px;">function funTask(x) { return Math.log(x)/Math.log(Math.E)+2*x-6; } var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180, 1); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = [], e = []; //需要显示的函数说明 var f1 = 'y=lnx+2x-6', f2 = 'y = logx', f3 = 'y=x', f4 = 'y=e^x', f5 = 'y = ln(x)'; //函数描点 for (var x = xS; x <= xE; x+=0.3) { if (x != 0) { a.push([x, funTask(x)]); } } //二分法求函数的零点 //区间的最小值和最大值 var minX = 0, maxX = 4; var y1 = y2 = 0; x = minX; y1 = funTask(x); x = maxX; y2 = funTask(x); //如果在给定区间上存在有零点 if (y1 * y2 < 0) { var epsilon = 0.000001; while (Math.abs(y1-y2) > epsilon) { x = minX; y1 = funTask(x); x = maxX; y2 = funTask(x); x = (minX+maxX)/2; y = funTask(x); if (y * y1 < 0) { maxX = x; } else { minX = x; } } plot.setFillStyle('blue') .fillText('零点:x = '+ ((minX+maxX)/2).toFixed(3), -200, -60, 120); } </span>
这个题,由于[人叫板老师]的精度不够,所以取得的值并不如小伟的准确。
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180, 1); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var transform = new Transform(); //存放函数图像上的点 var a = [], b = [], c = [], d = [], e = []; //需要显示的函数说明 var f1 = 'y=2^x+3x-7', f2 = 'y = logx', f3 = 'y=x', f4 = 'y=e^x', f5 = 'y = ln(x)'; //函数描点 for (var x = xS; x <= xE; x+=0.3) { if (x != 0) { a.push([x, funTask(x)]); } } //二分法求函数的零点 //区间的最小值和最大值 var minX = 0, maxX = 2; var y1 = y2 = 0; x = minX; y1 = funTask(x); x = maxX; y2 = funTask(x); //如果在给定区间上存在有零点 if (y1 * y2 < 0) { var epsilon = 0.000001; while (Math.abs(y1-y2) > epsilon) { x = minX; y1 = funTask(x); x = maxX; y2 = funTask(x); x = (minX+maxX)/2; y = funTask(x); if (y * y1 < 0) { maxX = x; } else { minX = x; } } plot.setFillStyle('blue') .fillText('零点:x = '+ ((minX+maxX)/2).toFixed(3), -200, -60, 120); } //document.write(a+'<br/>'); //存放临时数组 var tmp = []; //显示变换 if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } if (b.length > 0) { b = transform.scale(transform.translate(b, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数2 tmp = [].concat(b); shape.pointDraw(tmp, 'blue'); tmp = [].concat(b); shape.multiLineDraw(tmp, '#22CCFF'); plot.setFillStyle('blue'); plot.fillText(f2, 100, -120, 200); } if (c.length > 0) { c = transform.scale(transform.translate(c, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(c); shape.pointDraw(tmp, 'green'); tmp = [].concat(c); shape.multiLineDraw(tmp, '#CCFF22'); plot.setFillStyle('green'); plot.fillText(f3, 100, -150, 200); } if (d.length > 0) { d = transform.scale(transform.translate(d, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(d); shape.pointDraw(tmp, 'orange'); tmp = [].concat(d); shape.multiLineDraw(tmp, '#CC8800'); plot.setFillStyle('orange'); plot.fillText(f4, 100, -180, 200); } if (e.length > 0) { e = transform.scale(transform.translate(e, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(e); shape.pointDraw(tmp, 'purple'); tmp = [].concat(e); shape.multiLineDraw(tmp, 'purple'); plot.setFillStyle('purple'); plot.fillText(f5, 100, -60, 200); } } } function funTask(x) { return Math.pow(2, x)+3*x-7; }</span>
<span style="font-size:18px;">function funTask(x) { return Math.pow(x, 3)+1.1*Math.pow(x, 2)+0.9*x-1.4; } function funTask(x) { return 3-Math.log(x)-x; } </span>
小伟决定来好好研究一下这个多项式拟合数据点。
这里有一组数据:
<span style="font-size:18px;">//一组点 if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180, 1); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var X=[ 1 ,2 ,3 ,4 ,5 ,6], Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51]; var array = []; var size = X.length; for (var i = 0; i < size; i++) { array.push([X[i], Y[i]]); } var transform = new Transform(); var tmp = []; array = transform.scale(transform.translate(array, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(array); shape.pointDraw(tmp, 'green'); //tmp = [].concat(array); //shape.multiLineDraw(tmp, '#CCFF22'); }</span>
经过这样的拟合计算:
<span style="font-size:18px;">#一次多项式拟合 def linefit(x , y): N = float(len(x)) sx,sy,sxx,syy,sxy=0,0,0,0,0 for i in range(0,int(N)): sx += x[i] sy += y[i] sxx += x[i]*x[i] syy += y[i]*y[i] sxy += x[i]*y[i] a = (sy*sx/N -sxy)/( sx*sx/N -sxx) b = (sy - a*sx)/N r = abs(sy*sx/N-sxy)/math.sqrt((sxx-sx*sx/N)*(syy-sy*sy/N)) return a,b,r def tmp(): X=[ 1 ,2 ,3 ,4 ,5 ,6] Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51] a,b,r=linefit(X,Y) print("X=",X) print("Y=",Y) print("拟合结果: y = %10.5f x + %10.5f , r=%10.5f" % (a,b,r) ) >>> X= [1, 2, 3, 4, 5, 6] Y= [2.5, 3.51, 4.45, 5.52, 6.47, 7.51] 拟合结果: y = 1.00000 x + 1.49333 , r= 0.99989</span>
来看一下拟合结果是否正确:
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180, 1); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var X=[ 1 ,2 ,3 ,4 ,5 ,6], Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51]; var array = []; var size = X.length; for (var i = 0; i < size; i++) { array.push([X[i], Y[i]]); } var transform = new Transform(); var tmp = []; //绘制拟合曲线 var a = [], b = [], c = [], d = [], e = []; //需要显示的函数说明 var f1 = 'y=x+1.49333'; //函数描点 for (var x = xS; x <= xE; x+=1) { if (x != 0) { a.push([x, funTask(x)]); } } if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } //原数据点 array = transform.scale(transform.translate(array, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(array); shape.pointDraw(tmp, 'green'); //tmp = [].concat(array); //shape.multiLineDraw(tmp, '#CCFF22'); } function funTask(x) { return x+1.49333; }</span>
好像是没错。
来看看二次多项式拟合。
<span style="font-size:18px;">def polyfit(x, y, degree): import numpy; results = {} coeffs = numpy.polyfit(x, y, degree) results['polynomial'] = coeffs.tolist() # r-squared p = numpy.poly1d(coeffs) # fit values, and mean yhat = p(x) # or [p(z) for z in x] ybar = numpy.sum(y)/len(y) # or sum(y)/len(y) ssreg = numpy.sum((yhat-ybar)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat]) sstot = numpy.sum((y - ybar)**2) # or sum([ (yi - ybar)**2 for yi in y]) results['determination'] = ssreg / sstot #准确率 return results def tmp(): x=[ 1 ,2 ,3 ,4 ,5 ,6] y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.2] z1 = polyfit(x, y, 2) print(z1); >>> {'determination': 0.99893014166855909, 'polynomial': [-0.024285714285714542, 1.1257142857142872, 1.3699999999999986]}</span>
<span style="font-size:18px;"> if (1) { var r = 20; config.setSector(1,1,1,1); config.graphPaper2D(0, 0, r); config.axis2D(0, 0,180, 1); //坐标轴设定 var scaleX = 2*r, scaleY = 2*r; var spaceX = 2, spaceY = 2; var xS = -10, xE = 10; var yS = -10, yE = 10; config.axisSpacing(xS, xE, spaceX, scaleX, 'X'); config.axisSpacing(yS, yE, spaceY, scaleY, 'Y'); var X=[ 1 ,2 ,3 ,4 ,5 ,6] Y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.2] var array = []; var size = X.length; for (var i = 0; i < size; i++) { array.push([X[i], Y[i]]); } var transform = new Transform(); var tmp = []; //绘制拟合曲线 var a = [], b = [], c = [], d = [], e = []; //需要显示的函数说明 var f1 = 'y=-0.024x2+1.126x+1.370'; //函数描点 for (var x = xS; x <= xE; x+=1) { if (x != 0) { a.push([x, funTask(x)]); } } if (a.length > 0) { a = transform.scale(transform.translate(a, 0, 0), scaleX/spaceX, scaleY/spaceY); //函数1 tmp = [].concat(a); shape.pointDraw(tmp, 'red'); tmp = [].concat(a); shape.multiLineDraw(tmp, 'pink'); plot.setFillStyle('red'); plot.fillText(f1, 100, -90, 200); } //原数据点 array = transform.scale(transform.translate(array, 0, 0), scaleX/spaceX, scaleY/spaceY); tmp = [].concat(array); shape.pointDraw(tmp, 'green'); //tmp = [].concat(array); //shape.multiLineDraw(tmp, '#CCFF22'); } </span>
这也不知道它怎么算的,明显有很大偏差啊。
这里顺便贴下对数拟合的代码,这个和小伟没任何关系,
因为不是小伟写的,一时也不好验证对错,先放着看看吧。
<span style="font-size:18px;">对数函数拟合-这个是最难的,baidu上都找不到,google了半天才找到的。指数、幂数拟合啥的,都用这个,把func改写一下就行 from scipy import log as log print pcov import numpy from scipy import log from scipy.optimize import curve_fit def func(x, a, b): y = a * log(x) + b return y def polyfit(x, y, degree): results = {} #coeffs = numpy.polyfit(x, y, degree) popt, pcov = curve_fit(func, x, y) results['polynomial'] = popt # r-squared yhat = func(x ,popt[0] ,popt[1] ) # or [p(z) for z in x] ybar = numpy.sum(y)/len(y) # or sum(y)/len(y) ssreg = numpy.sum((yhat-ybar)**2) # or sum([ (yihat - ybar)**2 for yihat in yhat]) sstot = numpy.sum((y - ybar)**2) # or sum([ (yi - ybar)**2 for yi in y]) results['determination'] = ssreg / sstot return results x=[ 1 ,2 ,3 ,4 ,5 ,6] y=[ 2.5 ,3.51 ,4.45 ,5.52 ,6.47 ,7.51] z1 = polyfit(x, y, 2) print z1 </span>
本节到此结束,欲知后事如何,请看下回分解。
时间: 2024-10-09 20:16:10