HDU 4463: Outlets

http://acm.hdu.edu.cn/showproblem.php?pid=4463

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <cmath>
 4 #include <iomanip>
 5 //n:= # of vertices
 6 using namespace std;
 7 const int MAXN = 55;
 8 typedef pair<int, int> PII;
 9 PII coord[MAXN];
10 int parent[MAXN];
11 int n, tot, p, q;
12
13 int Find(int x)//finds the subset of the x-th element and
14 {
15     //updates its predecessors for furture efficiency
16     return (parent[x] == x) ? x : parent[x] = Find(parent[x]);
17 }
18 void Union(int x, int y)//units two subsets in to a single subset,
19 {
20     //called when they should share the same parent
21     parent[Find(x)] = Find(y);
22 }
23 struct Edge
24 {
25     int from, to;
26     double length;
27     Edge() {};
28     Edge(int f, int t, double l) :from(f), to(t), length(l)
29     {
30
31     };
32     friend bool operator<(const Edge &e, const Edge &f)
33     {
34         return e.length<f.length;
35     };
36     friend bool operator==(const Edge &e, const Edge &f)
37     {
38         return e.from == f.from&&e.to == f.to;
39     };
40 } edge[MAXN*MAXN / 2], NA;
41
42
43 double Kruskal()
44 {
45
46     /**initialization*/
47     for (int i = 1; i <= n; i++) //the index of an element represents the subset it belongs to,
48         parent[i] = i;              //so initially itself
49     sort(edge + 1, edge + tot + 1);
50     double res = NA.length;
51     parent[Find(NA.from)] = Find(NA.to);//add the road connecting Nike and Apple first
52     for (int i = 1; i <= tot; i++)
53     {
54         if (edge[i] == NA)continue;
55         int u = Find(edge[i].from), v = Find(edge[i].to);
56         if (u != v)
57         {
58             parent[u] = v;
59             res += edge[i].length;
60         }
61     }
62     return res;
63 }
64 int main()
65 {
66     while (cin >> n&&n)
67     {
68         cin >> p >> q;
69         tot = 0;
70         for (int i = 1; i <= n; i++)
71             scanf("%d%d", &coord[i].first, &coord[i].second);
72         /**add edges*/
73         for (int i = 1; i <= n; i++)
74             for (int j = 1; j < i; j++)
75             {
76                 edge[++tot] = Edge(i, j, hypot(coord[i].first - coord[j].first, coord[i].second - coord[j].second));
77                 if ((i == p&&j == q) || (i == q&&j == p))NA = edge[tot];
78             }
79         /**Kruskal*/
80         cout << fixed << setprecision(2) << Kruskal() << ‘\n‘;
81
82     }
83     return 0;
84 }
时间: 2024-10-15 08:42:54

HDU 4463: Outlets的相关文章

hdu 4463 Outlets Prim 次小生成树 简单题

Outlets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2200    Accepted Submission(s): 1028 Problem Description In China, foreign brand commodities are often much more expensive than abroad. T

HDU 4463 Outlets(一条边固定的最小生成树)

Outlets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 2594    Accepted Submission(s): 1196 Problem Description In China, foreign brand commodities are often much more expensive than abroad. Th

HDU 4463 Outlets (prime_杭州区域赛水题)

Problem Description In China, foreign brand commodities are often much more expensive than abroad. The main reason is that we Chinese people tend to think foreign things are better and we are willing to pay much for them. The typical example is, on t

【HDU 4463 Outlets】最小生成树

以(x,y)坐标的形式给出n个点,修建若干条路使得所有点连通(其中有两个给出的特殊点必须相邻),求所有路的总长度的最小值. 因对所修的路的形状没有限制,所以可看成带权无向完全图,边权值为两点间距离.因是稠密图,故用邻接矩阵存储更好(完全图,边数e达到n(n-1)/2). 至此,可将问题抽象为求最小生成树的边权和. 邻接矩阵版Prim算法求最小生成树,时间复杂度为O(n*n).邻接表版prim用堆优化后理论上可达O(elogn),边数组版kruscal理论也为O(elogn),但此题是完全图,e=

hdu 4463 Outlets(最小生成树)

题意:n个点修路,要求总长度最小,但是有两个点p.q必须相连 思路:完全图,prim算法的效率取决于节点数,适用于稠密图.用prim求解. p.q间距离设为0即可,最后输出时加上p.q间的距离 prim算法: #include<iostream> #include<stdio.h> #include<string.h> #include<math.h> using namespace std; #define INF 15000//计算得最长值 #defin

hdu 4463 Outlets 最小生成树

#include <stdio.h> #include <string.h> #include <iostream> #include <algorithm> #include <vector> #include <queue> #include <stack> #include <set> #include <map> #include <string> #include <ma

HDU 4463 Outlets 【最小生成树】

<题目链接> 题目大意: 给你一些点的坐标,要求你将这些点全部连起来,但是必须要包含某一条特殊的边,问你连起这些点的总最短距离是多少. 解题分析: 因为一定要包含那条边,我们就记录下那条边的边权,然后将那条边边权置为0,再跑一遍最小生成树即可. #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> using namespace std; int n,

HDOJ 4463 Outlets 最小生成树

Prim....似乎没有考虑多点共线也能A..... Outlets Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 2565    Accepted Submission(s): 1182 Problem Description In China, foreign brand commodities are often much mo

hdu 4463 有一条边必须加上 (2012杭州区域赛K题)

耐克店 和 苹果店必须相连 Sample Input42 30 01 00 -1 1 -10 Sample Output3.41 1 # include <iostream> 2 # include <cstdio> 3 # include <cstring> 4 # include <algorithm> 5 # include <cmath> 6 # define LL long long 7 using namespace std ; 8