python3 实现 杨辉三角

杨辉三角,是二项式系数在三角形中的一种几何排列。在欧洲,这个表叫做帕斯卡三角形。帕斯卡(1623----1662)是在1654年发现这一规律的,比杨辉要迟393年,比贾宪迟600年

概述

前提:每行端点与结尾的数为1.

  1. 每个数等于它上方两数之和。
  2. 每行数字左右对称,由1开始逐渐变大。
  3. 第n行的数字有n项。
  4. 第n行数字和为2n-1。
  5. 第n行的m个数可表示为 C(n-1,m-1),即为从n-1个不同元素中取m-1个元素的组合数。
  6. 第n行的第m个数和第n-m+1个数相等 ,为组合数性质之一。
  7. 每个数字等于上一行的左右两个数字之和。可用此性质写出整个杨辉三角。即第n+1行的第i个数等于第n行的第i-1个数和第i个数之和,这也是组合数的性质之一。即 C(n+1,i)=C(n,i)+C(n,i-1)
  8. (a+b)n的展开式中的各项系数依次对应杨辉三角的第(n+1)行中的每一项。
  9. 将第2n+1行第1个数,跟第2n+2行第3个数、第2n+3行第5个数……连成一线,这些数的和是第4n+1个斐波那契数;将第2n行第2个数(n>1),跟第2n-1行第4个数、第2n-2行第6个数……这些数之和是第4n-2个斐波那契数。
  10. 将各行数字相排列,可得11的n-1(n为行数)次方:1=11^0; 11=11^1; 121=11^2……当n>5时会不符合这一条性质,此时应把第n行的最右面的数字"1"放在个位,然后把左面的一个数字的个位对齐到十位... ...,以此类推,把空位用“0”补齐,然后把所有的数加起来,得到的数正好是11的n-1次方。以n=11为例,第十一行的数为:1,10,45,120,210,252,210,120,45,10,1,结果为 25937424601=1110。

  

#!/usr/local/sbin/python3
# -*- coding: utf-8 -*-

from functools import reduce

def row(x):
    return ‘ ‘.join(list(map(str,reduce(lambda x,y:list(map(sum,zip([0]+x,x+[0]))),range(x),[1]))))

def pascal(x):
    return ‘\n‘.join(row(i).center(len(row(x-1))) for i in range(x))

print(pascal(10))

  实现效果如下:

  

时间: 2024-10-17 16:19:19

python3 实现 杨辉三角的相关文章

python3练习-杨辉三角/帕斯卡三角形

杨辉三角形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 # 期待输出: # [1] # [1, 1] # [1, 2, 1] # [1, 3, 3, 1] # [1, 4, 6, 4, 1] # [1, 5, 10, 10, 5, 1] # [1, 6, 15, 20, 15, 6, 1] # [1, 7, 21, 35, 35, 21, 7, 1] # [1, 8, 28, 56, 70, 56, 28, 8, 1] # [1, 9, 36,

Leecode刷题之旅-C语言/python-118杨辉三角

/* * @lc app=leetcode.cn id=118 lang=c * * [118] 杨辉三角 * * https://leetcode-cn.com/problems/pascals-triangle/description/ * * algorithms * Easy (60.22%) * Total Accepted: 17.6K * Total Submissions: 29.2K * Testcase Example: '5' * * 给定一个非负整数 numRows,生成

python 实现杨辉三角(依旧遗留问题)

1 #! usr/bin/env python3 2 #-*- coding :utf-8 -*- 3 print('杨辉三角的generator') 4 def triangles(): 5 6 N=[1] 7 while True : 8 yield N 9 N.append(0) 10 N = [N[i-1]+N[i] for i in range(len(N)) ] 11 12 triangles = triangles() 13 for j in range(10): 14 print

LeetCode (13) Pascal's Triangle (杨辉三角 )

题目描述 Given numRows, generate the first numRows of Pascal's triangle. For example, given numRows = 5, Return 从第三行开始,每行除了最左边和最右边两个数为1,其他数字都是上一行中相邻两个数字之和.根据上述规则可以写出下面的代码: class Solution { public: vector<vector<int> > generateRow1() { vector<in

杨辉三角

1 package com.llh.demo; 2 3 /** 4 * 杨辉三角 5 * 6 * @author llh 7 * 8 */ 9 public class Test { 10 /* 11 * 杨辉三角 12 */ 13 public static void main(String[] args) { 14 int[] a = new int[11]; 15 int num = 1; 16 // 17 for (int i = 1; i <= 10; i++) { 18 for (i

杨辉三角实例菱形实例

杨辉三角实例 public class Hui { public static void main (String [] args){ int [][] a =new int [10][10]; for(int i=0;i<a.length;i++){ for(int j=0;j<=i;j++){ if(j==0||i==j){ System.out.print(" "+(a[i][j]=1)); }else {a[i][j]=a[i-1][j-1]+a[i-1][j];

js算法集合(二) javascript实现斐波那契数列 (兔子数列) Javascript实现杨辉三角

js算法集合(二)  斐波那契数列.杨辉三角 ★ 上一次我跟大家分享一下做水仙花数的算法的思路,并对其扩展到自幂数的算法,这次,我们来对斐波那契数列和杨辉三角进行研究,来加深对Javascript的理解. 一.Javascript实现斐波那契数列 ①要用Javascript实现斐波那契数列,我们首先要了解什么是斐波那契数列:斐波那契数列(Fibonacci sequence),又称黄金分割数列.因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为

使用Java打印杨辉三角

package 杨辉三角; import java.util.Scanner; public class 三角 { private static Scanner scn; public static void main(String[] args) { scn = new Scanner(System.in); System.out.println("请输入数据"); int n = scn.nextInt(); //定义一个二维数组 int [][] array = new int

Java的二维数组的应用及杨辉三角的编写

(1) 编写一个程序,生成一个10*10的二维随机整数数组,并将该数组的每行最大值保存于一个一维数组中,将每列平均值保存于另外一个一维数组中并分别输出. (2) 编程输出杨辉三角的前10行. 找出一个,即该位置上的元素在该行上最大,在该列上最小(注:一个二维数组也可能没有这样的鞍点). /** * * @author liuhui *@version Java上机实验三 *@time 2016.10.30 */ public class javatest2 { public static int