深入Android渲染机制

1.知识储备

  • CPU: 中央处理器,它集成了运算,缓冲,控制等单元,包括绘图功能.CPU将对象处理为多维图形,纹理(Bitmaps、Drawables等都是一起打包到统一的纹理).
  • GPU:一个类似于CPU的专门用来处理Graphics的处理器, 作用用来帮助加快格栅化操作,当然,也有相应的缓存数据(例如缓存已经光栅化过的bitmap等)机制。
  • OpenGL ES是手持嵌入式设备的3DAPI,跨平台的、功能完善的2D和3D图形应用程序接口API,有一套固定渲染管线流程. 附相关OpenGL渲染流程资料
  • DisplayListAndroid把XML布局文件转换成GPU能够识别并绘制的对象。这个操作是在DisplayList的帮助下完成的。DisplayList持有所有将要交给GPU绘制到屏幕上的数据信息。
  • 格栅化 是 将图片等矢量资源,转化为一格格像素点的像素图,显示到屏幕上,过程图如下.

  • 垂直同步VSYNC:让显卡的运算和显示器刷新率一致以稳定输出的画面质量。它告知GPU在载入新帧之前,要等待屏幕绘制完成前一帧。下面的三张图分别是GPU和硬件同步所发生的情况,Refresh Rate:屏幕一秒内刷新屏幕的次数,由硬件决定,例如60Hz.而Frame Rate:GPU一秒绘制操作的帧数,单位是30fps,正常情况过程图如下.


2.渲染机制分析

渲染流程线

UI对象—->CPU处理为多维图形,纹理 —–通过OpeGL ES接口调用GPU—-> GPU对图进行光栅化(Frame Rate ) —->硬件时钟(Refresh Rate)—-垂直同步—->投射到屏幕

渲染时间线

Android系统每隔16ms发出VSYNC信号(1000ms/60=16.66ms),触发对UI进行渲染, 如果每次渲染都成功,这样就能够达到流畅的画面所需要的60fps,为了能够实现60fps,这意味着计算渲染的大多数操作都必须在16ms内完成。

正常情况

渲染超时,计算渲染时间超过16ms

当这一帧画面渲染时间超过16ms的时候,垂直同步机制会让显示器硬件 等待GPU完成栅格化渲染操作,

这样会让这一帧画面,多停留了16ms,甚至更多.这样就这造成了 用户看起来 画面停顿.

当GPU渲染速度过慢,就会导致如下情况,某些帧显示的画面内容就会与上一帧的画面相同


3.渲染时会出现的问题

GPU过度绘制

GPU的绘制过程,就跟刷墙一样,一层层的进行,16ms刷一次.这样就会造成,图层覆盖的现象,即无用的图层还被绘制在底层,造成不必要的浪费.

过度绘制查看工具

在手机端的开发者选项里,有OverDraw监测工具,调试GPU过度绘制工具,

其中颜色代表渲染的图层情况,分别代表1层,2层,3层,4层覆盖.

我的魅族手机的Monitor GPU Rendering

计算渲染的耗时

任何时候View中的绘制内容发生变化时,都会重新执行创建DisplayList,渲染DisplayList,更新到屏幕上等一 系列操作。这个流程的表现性能取决于你的View的复杂程度,View的状态变化以及渲染管道的执行性能。

举个例子,当View的大小发生改变,DisplayList就会重新创建,然后再渲染,而当View发生位移,则DisplayList不会重新创建,而是执行重新渲染的操作.

当你的View过于复杂,操作又过于复杂,就会计算渲染时间超过16ms,产生卡顿问题.

渲染耗时呈现工具

工具中,不同手机呈现方式可能会有差别.分别关于StatusBar,NavBar,激活的程序Activity区域的GPU Rending信息。激活的程序Activity区域的GPU Rending信息。

界面上会滚动显示垂直的柱状图来表示每帧画面所需要渲染的时间,柱状图越高表示花费的渲染时间越长。

中间有一根绿色的横线,代表16ms,我们需要确保每一帧花费的总时间都低于这条横线,这样才能够避免出现卡顿的问题。

每一条柱状线都包含三部分,

蓝色代表测量绘制Display List的时间,

红色代表OpenGL渲染Display List所需要的时间,

黄色代表CPU等待GPU处理的时间。


4. 如何优化

有人会说这些小地方,不值得优化.但是当你用的是低配机器,内存到饱和,CPU运算到达饱和,就像一个界面要做很多交互,绘制,加载图片,请求网络.后,一个小问题就会导致页面卡顿(就像我手机的淘宝客户端…),OOM,项目崩溃.

是的,这就是力量~

Android系统已经对它优化

在Android里面那些由主题所提供的资源,例如Bitmaps,Drawables都是一起打包到统一的Texture纹理当中,然后再传递到 GPU里面,这意味着每次你需要使用这些资源的时候,都是直接从纹理里面进行获取渲染的。

我们要做的优化

扁平化处理,防止过度绘制OverDraw

1.每一个layout的最外层父容器 是否需要?

2.布局层级优化

进行检测时,可能会让多种检测工具冲突,用Android Device Monitor的时候,最好关闭相关手机上的开发者检测工具开关.

查看自己的布局,深的层级,是否可以做优化.

渲染比较耗时(颜色就能看出来),想办法能否减少层级以及优化每一个View的渲染时间.

Hierarchy Viewer工具

他是查看耗时情况,和布局树的深度的工具.

3.图片选择

Android的界面能用png最好是用png了,因为32位的png颜色过渡平滑且支持透明。jpg是像素化压缩过的图片,质量已经下降了,再拿来做9path的按钮和平铺拉伸的控件必然惨不忍睹,要尽量避免。

对于颜色繁杂的,照片墙纸之类的图片(应用的启动画面喜欢搞这种),那用jpg是最好不过了,这种图片压缩前压缩后肉眼分辨几乎不计,如果保存成png体积将是jpg的几倍甚至几十倍,严重浪费体积。

4.清理不必要的背景

5.当背景无法避免,尽量用Color.TRANSPARENT

因为透明色Color.TRANSPARENT是不会被渲染的,他是透明的.



//优化前
//优化前: 当图片不为空,ImageView加载图片,然后统一设置背景
Bean bean=list.get(i);
 if (bean.img == 0) {
            Picasso.with(getContext()).load(bean.img).into(holder.imageView);
        }
        chat_author_avatar.setBackgroundColor(bean.backPic);
//优化后
//优化后:当图片不为空,ImageView加载图片,并设置背景为TRANSPARENT;
//当图片为空,ImageView加载TRANSPARENT,然后设置背景为无照片背景
Bean bean=list.get(i);
 if (bean.img == 0) {
            Picasso.with(getContext()).load(android.R.color.transparent).into(holder.imageView);
            holder.imageView.setBackgroundColor(bean.backPic);
        } else {
            Picasso.with(getContext()).load(bean.img).into(holder.imageView);
            holder.imageView.setBackgroundColor(Color.TRANSPARENT);
        }

————-对比结果——————–

6.优化自定义View的计算

View中的方法OnMeasure,OnLayout,OnDraw.在我们自定义View起到了决定作用,我们要学会研究其中的优化方法.

学会裁剪掉View的覆盖部分,增加cpu的计算量,来优化GPU的渲染


  /**
     * Intersect the current clip with the specified rectangle, which is
     * expressed in local coordinates.
     *
     * @param left   The left side of the rectangle to intersect with the
     *               current clip
     * @param top    The top of the rectangle to intersect with the current clip
     * @param right  The right side of the rectangle to intersect with the
     *               current clip
     * @param bottom The bottom of the rectangle to intersect with the current
     *               clip
     * @return       true if the resulting clip is non-empty
     */
    public boolean clipRect(float left, float top, float right, float bottom) {
        return native_clipRect(mNativeCanvasWrapper, left, top, right, bottom,
                Region.Op.INTERSECT.nativeInt);
    }

5.总结

性能优化其实不仅仅是一种技术,而是一种思想,你只听过它的高大上,却不知道它其实就是各个细节处的深入研究和处理.

当然,有的时候也需要自己进行权衡效果和性能,根据需求进行选择.

还有,Android Device Monitor 是个好东西~简直就是性能优化大本营,性能优化的工具基本都在其中.

所以在平时的开发过程中,养成良好的思考习惯,是第一步~

写代码的时候要想:

1.你的代码是不是多余?

2.你的对象有没有必要在循环中创建?

3.你的计算方法是不是最优?

画界面的时候要想:

1.布局是否有背景?

2.是否可以删掉多余的布局?

3.自定义View是否进行了裁剪处理?

4.布局是否扁平化,移除非必需的UI组?

最后,Android Device Monitor 是个好东西~ 性能优化的工具基本都在其中.

时间: 2024-10-01 02:53:20

深入Android渲染机制的相关文章

Android渲染机制和丢帧分析

http://blog.csdn.net/bd_zengxinxin/article/details/52525781 自己编写App的时候,有时会感觉界面卡顿,尤其是自定义View的时候,大多数是因为布局的层次过多,存在不必要的绘制, 或者onDraw等方法中过于耗时.那么究竟需要多快,才能给用户一个流畅的体验呢?那么就需要简单了解下Android的渲染机制: Android系统每隔16ms发出VSYNC信号,触发对UI进行渲染,那么整个过程如果保证在16ms以内就能达到一个流畅的画面. 那么

深入理解Android渲染机制

基础知识 CPU: 中央处理器,它集成了运算,缓冲,控制等单元,包括绘图功能.CPU将对象处理为多维图形,纹理(Bitmaps.Drawables等都是一起打包到统一的纹理). GPU:一个类似于CPU的专门用来处理Graphics的处理器, 作用用来帮助加快格栅化操作,当然,也有相应的缓存数据(例如缓存已经光栅化过的bitmap等)机制. OpenGL ES:是手持嵌入式设备的3DAPI,跨平台的.功能完善的2D和3D图形应用程序接口API,有一套固定渲染管线流程. OpenGL ES详解 D

Chromium网页渲染机制简要介绍和学习计划

作为一个浏览器,快速地将网页渲染出来是最重要的工作.Chromium为了做到这一点,费尽了心机,做了大量优化工作.这些优化工作是卓有成效的,代表了当今最先进的网页渲染技术.值得一提的是,这些渲染技术不仅适用于网页渲染,也可以应用在原生系统的UI渲染上.例如,在Android系统上,我们就可以看到两者在渲染技术上的相似之处.本文接下来就对Chromium的网页渲染机制进行简要介绍,并且制定学习计划. 老罗的新浪微博:http://weibo.com/shengyangluo,欢迎关注! Chrom

Android绘图机制(一) View类

对android绘图机制的理解,在Android学习中可谓至关重要,包括自定义控件也是使用非常频繁的内容.最近在项目中遇到一个比较棘手的问题,项目中好几个模块都用到ListView或者GridView的”下拉刷新,上拉加载更多“功能 .一开始在网上找了大牛写的作品,用在项目中后发现时不时会出现卡壳的现象,改进以后会有所改善,不过还是感觉有所欠缺.无奈我是个处女座菜鸟,尝试着找出这些问题的根本原因却发现无从下手,所以先补补基础.( 纯文字看着确实很费劲,所以顺便引用下其他的文章)  概述 View

Chromimum Android渲染介绍

从概念上一个使用硬件加速(AC)时,页面显示的结构是Viewport -> Layer(s) -> Tile(s),所谓的纹理就是Tile上显示的内容.分块最大的好处就是重绘的单元变小,更利于降低系统开销. (Tile翻成瓦片,还不如瓷砖呢 ^_^!) 详情可参考:开启硬件加速时Web页面绘制流程. 从WebKit内核到Chromium的cc模块,其对应关系如下: Chormium通过impl-side painting实现了多线程的渲染(Design Document).其目的是将WebKi

webkit 渲染机制

最近看了< webkit技术内幕 >,虽然并不能完全看懂,但是对浏览器的渲染机制也算是有了一个比较完整的认识. 我们从浏览器地址栏输入网址开始到web页面被完整的呈现在眼前,大概的经过了这样一个过程:网址被DNS解析为IP地址 -> 通过IP地址建立TCP连接 -> 发送HTTP请求 -> 服务器处理请求并返回响应 ->  浏览器解析渲染页面 -> 断开TCP连接 可是浏览器是怎么去解析渲染页面的呢?这里就要涉及到浏览器的内核,也就是浏览器的渲染引擎(严格来说应该

Android广播机制(转)

1.Android广播机制概述 Android广播分为两个方面:广播发送者和广播接收者,通常情况下,BroadcastReceiver指的就是广播接收者(广播接收器).广播作为Android组件间的通信方式,可以使用的场景如下:1.同一app内部的同一组件内的消息通信(单个或多个线程之间): 2.同一app内部的不同组件之间的消息通信(单个进程): 3.同一app具有多个进程的不同组件之间的消息通信: 4.不同app之间的组件之间消息通信: 5.Android系统在特定情况下与App之间的消息通

第三章 Android绘图机制与处理技巧

1.屏幕尺寸信息 屏幕大小:屏幕对角线长度,单位“寸”:分辨率:手机屏幕像素点个数,例如720x1280分辨率:PPI(Pixels Per Inch):即DPI(Dots Per Inch),它是对角线的像素点数除以屏幕大小得到的:系统屏幕密度:android系统定义了几个标准的DPI值作为手机的固定DPI.(注,最后一个有笔误,正确的是1080x1920)独立像素密度(DP):android系统使用mdpi屏幕作为标准,在这个屏幕上1dp=1px,其他屏幕可以通过比例进行换算.在hdpi中,

浏览器的渲染机制

Google Web Fundamentals 是一个非常优秀的文档,里面讲到了跟web.浏览器.前端的方方面面.我总结一下其中的 Ilya Grigorik 写的 Critical rendering path 浏览器渲染机制部分的内容如下: 几个概念 1.DOM:Document Object Model,浏览器将HTML解析成树形的数据结构,简称DOM. 2.CSSOM:CSS Object Model,浏览器将CSS代码解析成树形的数据结构. 3.DOM 和 CSSOM 都是以 Byte