机器学习实战knn

最近在学习这本书,按照书上的实例编写了knn.py的文件,使用canopy进行编辑,用shell交互时发现运行时报错:

>>> kNN.classify0([0,0],group,labels,3)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
NameError: name ‘kNN‘ is not defined

  运行的代码如下:

from numpy import *
import operator  

def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0,0.1]])
    labels = [‘A‘,‘A‘,‘B‘,‘B‘]
    return group,labels  

def classify0(inX,dataSet,labels,k):
    dataSetSize = dataSet.shape[0]
    diffMat = tile(inX,(dataSetSize,1)) - dataSet
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis = 1)
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()
    classCount = {}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1
    sortedClassCount = sorted(classCount.iteritems(),
                              key=operator.itemgetter(1),reverse=True)
    return sortedClassCount[0][0]  

然后我在canopy中重新关闭程序,又打开后,就可以运行成功了

import kNN

group,labels=kNN.createDataSet()

kNN.classify0([0,0],group,labels,3)

还有一点是文件名不识别大小写 需要注意

p,li { white-space: pre-wrap }

时间: 2024-11-07 21:21:56

机器学习实战knn的相关文章

机器学习实战——kNN分类器

惰性学习法:简单的存储数据,一直等待,直到给定一个测试元组时才进行泛化,根据对存储的元组的相似性进行分类.kNN(k近邻)分类方法于20世纪50年代提出,由于计算密集型算法,因此到60年代之后随着计算能力增强后才逐步应用. kNN基于类比学习,将给定的测试元组表示为n维空间中的一个点,n代表属性数目.然后使用某种距离度量方式来寻找与给定测试元组最近的k个训练元组,对这个k个训练元组的类别进行统计,返回类别数目多的类别作为未知测试元组的类别. 常用的距离度量就是欧几里得距离,也称为二范数.同时为了

【读书笔记】机器学习实战-kNN(1)

k临近算法(kNN)采用测量不同特征值之间的距离方法进行分类,也是一种非常直观的方法.本文主要记录了使用kNN算法改进约会网站的例子. 任务一:分类算法classify0 就是使用距离公式计算特征值之间的距离,选择最邻近的k个点,通过统计这k个点的结果来得出样本的预测值. tile函数用法在这里 argsort函数在这里 def classify0(inX,dataset,labels,k): #shape 返回行列数,shape[0]是行数,有多少元组 datasetsize = datase

机器学习实战- KNN

KNN:k近邻算法-在训练样本中找到与待测样本距离相近的N个样本,并用这N个样本中所属概率最大的类别作为待测样本的类别. 算法步骤: 1.对训练中的样本数据的不同属性进行归一化处理. 2.计算待测样本到训练样本集中的距离.(欧拉距离或曼哈顿距离): 3.找到N个距离最小的样本属于不同类别的概率. 4.取最大的概率作为待测样本的类别. 例子1: 相亲 相亲考虑的条件: 1) 每年飞行公里 2) 每周打的游戏时长 3)每周消耗的ice cream 态度用1,2,3表示:1表示little like

机器学习实战之kNN

笔者最近开始对机器学习非常感兴趣,作为一个有志向的软设方向的女孩纸,我开始了学习的第一步入门,下面将今天刚刚学习的kNN及其应用进行总结和回顾,希望可以得到更好的提升,当然,有志同道合者,你可以联系我给我留言,毕竟菜鸟一起飞才能飞的更高更远.?? 首先,kNN算法也叫k-近邻算法,它的工作原理是:存在一个样本的数据集合,也称作训练样本集,并且每个样本集都有其标签.故而,我们很清楚每一数据和其所属分类之间的关系.当输入新样本时,我们将新数据的每一个特征样本集中对应的数据特征进行比较,然后算法提取特

基于kNN的手写字体识别——《机器学习实战》笔记

看完一节<机器学习实战>,算是踏入ML的大门了吧!这里就详细讲一下一个demo:使用kNN算法实现手写字体的简单识别 kNN 先简单介绍一下kNN,就是所谓的K-近邻算法: [作用原理]:存在一个样本数据集合.每个样本数据都存在标签.输入没有标签的新数据后,将新数据的每个特征与样本集数据的对应特征进行比较,然后算法提取样本集中最相似的分类标签.一般说来,我们只选择样本数据集中前k个最相似的数据,最后,选择这k个相似数据中出现次数最多的分类,作为新数据的分类. 通俗的说,举例说明:有一群明确国籍

《机器学习实战》读书笔记2:K-近邻(kNN)算法

声明:文章是读书笔记,所以必然有大部分内容出自<机器学习实战>.外加个人的理解,另外修改了部分代码,并添加了注释 1.什么是K-近邻算法? 简单地说,k-近邻算法采用测量不同特征值之间距离的方法进行分类.不恰当但是形象地可以表述为近朱者赤,近墨者黑.它有如下特点: 优点:精度高.对异常值不敏感.无数据输入假定 缺点:计算复杂度高.空间复杂度高 适用数据范围:数值型和标称型 2.K-近邻算法的工作原理: 存在一个样本数据集合,也称作训练样本集,并且样本集中的每个数据都存在标签,即我们知道样本集中

机器学习实战之kNN算法

机器学习实战这本书是基于python的,如果我们想要完成python开发,那么python的开发环境必不可少: (1)python3.52,64位,这是我用的python版本 (2)numpy 1.11.3,64位,这是python的科学计算包,是python的一个矩阵类型,包含数组和矩阵,提供了大量的矩阵处理函数,使运算更加容易,执行更加迅速. (3)matplotlib 1.5.3,64位,在下载该工具时,一定要对应好python的版本,处理器版本,matplotlib可以认为是python

机器学习实战笔记——基于KNN算法的手写识别系统

本文主要利用k-近邻分类器实现手写识别系统,训练数据集大约2000个样本,每个数字大约有200个样本,每个样本保存在一个txt文件中,手写体图像本身是32X32的二值图像,如下图所示: 首先,我们需要将图像格式化处理为一个向量,把一个32X32的二进制图像矩阵通过img2vector()函数转换为1X1024的向量: def img2vector(filename): returnVect = zeros((1,1024)) fr = open(filename) for i in range(

《机器学习实战》--KNN

代码来自<机器学习实战>https://github.com/wzy6642/Machine-Learning-in-Action-Python3 K-近邻算法(KNN) 介绍 简单地说,k-近邻算法采用测量不同特征值之间的距离方法进行分类. 优点:精度高.对异常值不敏感,无数据输入假定. 缺点:计算复杂度高.空间复杂度高,无法给出数据的内在含义. 使用数据范围:数值型.标称型. 分类函数的伪代码: 对未知类别属性的数据集中的每个点依次执行以下操作: (1)计算已知类别数据集中的点与当前点之间