POJ 1269 Intersecting Lines(判断直线相交)

题目地址:POJ 1269

直接套模板就可以了。。。实在不想自己写模板了。。。写的又臭又长。。。。不过这题需要注意的是要先判断是否有直线垂直X轴的情况。

代码如下:

#include <iostream>
#include <cstdio>
#include <string>
#include <cstring>
#include <stdlib.h>
#include <math.h>
#include <ctype.h>
#include <queue>
#include <map>
#include <set>
#include <algorithm>

using namespace std;
#define eqs 1e-10
struct node
{
    double x, y;
}point;
int dcmp(double x, double y)
{
    if(fabs(x-y)<=eqs)
        return 1;
    return 0;
}
node intersection(node u1, node u2, node v1, node v2)
{
    node ret=u1;
    double t=((u1.x-v1.x)*(v1.y-v2.y)-(u1.y-v1.y)*(v1.x-v2.x))/((u1.x-u2.x)*(v1.y-v2.y)-(u1.y-u2.y)*(v1.x-v2.x));
    ret.x+=(u2.x-u1.x)*t;
    ret.y+=(u2.y-u1.y)*t;
    return ret;
}
int main()
{
    int n, i;
    printf("INTERSECTING LINES OUTPUT\n");
    scanf("%d",&n);
    node f1, f2, f3, f4;
    while(n--)
    {
        scanf("%lf%lf%lf%lf%lf%lf%lf%lf",&f1.x,&f1.y,&f2.x,&f2.y,&f3.x,&f3.y,&f4.x,&f4.y);
        node a, b;
        a.x=f2.x-f1.x;
        a.y=f2.y-f1.y;
        b.x=f4.x-f3.x;
        b.y=f4.y-f3.y;
        if(dcmp(f1.x,f2.x)&&dcmp(f3.x,f4.x))
        {
            if(f1.x==f3.x)
            {
                printf("LINE\n");
            }
            else
            {
                printf("NONE\n");
            }
            continue ;
        }
        else if(dcmp(f1.x,f2.x))
        {
            double k=b.y/b.x;
            double b=f3.y-(f3.x*k);
            double y=k*f1.x+b;
            printf("POINT %.2lf %.2lf\n",f1.x,y);
            continue ;
        }
        else if(dcmp(f3.x,f4.x))
        {
            double k=b.y/b.x;
            double b=f1.y-(f1.x*k);
            double y=k*f3.x+b;
            printf("POINT %.2lf %.2lf\n",f3.x,y);
            continue ;
        }
        double k1=a.y/a.x;
        double k2=b.y/b.x;
        double b1=f1.y-(k1*f1.x);
        double b2=f3.y-(k2*f3.x);
        if(dcmp(k1,k2))
        {
            if(dcmp(b1,b2))
            {
                printf("LINE\n");
            }
            else
                printf("NONE\n");
        }
        else
        {
            node ff=intersection(f1,f2,f3,f4);
            printf("POINT %.2lf %.2lf\n",ff.x,ff.y);
        }
    }
    printf("END OF OUTPUT\n");
    return 0;
}

POJ 1269 Intersecting Lines(判断直线相交)

时间: 2024-11-07 10:14:25

POJ 1269 Intersecting Lines(判断直线相交)的相关文章

POJ 1269 Intersecting Lines (判断直线位置关系)

题目链接:POJ 1269 Problem Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three ways: 1) no intersection because they are parallel, 2) intersect in a line becau

POJ 1269 Intersecting Lines(线段相交,水题)

Intersecting Lines 大意:给你两条直线的坐标,判断两条直线是否共线.平行.相交,若相交,求出交点. 思路:线段相交判断.求交点的水题,没什么好说的. struct Point{ double x, y; } ; struct Line{ Point a, b; } A, B; double xmult(Point p1, Point p2, Point p) { return (p1.x-p.x)*(p2.y-p.y)-(p1.y-p.y)*(p2.x-p.x); } bool

poj 1269 Intersecting Lines(判相交交点与平行)

http://poj.org/problem?id=1269 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 10379   Accepted: 4651 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in

poj 1269 Intersecting Lines(判断两直线关系,并求交点坐标)

Intersecting Lines Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 12421   Accepted: 5548 Description We all know that a pair of distinct points on a plane defines a line and that a pair of lines on a plane will intersect in one of three

POJ 1269 Intersecting Lines【判断直线相交】

题意:给两条直线,判断相交,重合或者平行 思路:判断重合可以用叉积,平行用斜率,其他情况即为相交. 求交点: 这里也用到叉积的原理.假设交点为p0(x0,y0).则有: (p1-p0)X(p2-p0)=0 (p3-p0)X(p2-p0)=0 展开后即是 (y1-y2)x0+(x2-x1)y0+x1y2-x2y1=0 (y3-y4)x0+(x4-x3)y0+x3y4-x4y3=0 将x0,y0作为变量求解二元一次方程组. 假设有二元一次方程组 a1x+b1y+c1=0; a2x+b2y+c2=0

POJ 1269 Intersecting Lines 直线相交判断

D - Intersecting Lines Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u Submit Status Practice POJ 1269 Appoint description:  System Crawler  (2016-05-08) Description We all know that a pair of distinct points on a plane d

判断两条直线的位置关系 POJ 1269 Intersecting Lines

两条直线可能有三种关系:1.共线     2.平行(不包括共线)    3.相交. 那给定两条直线怎么判断他们的位置关系呢.还是用到向量的叉积 例题:POJ 1269 题意:这道题是给定四个点p1, p2, p3, p4,直线L1,L2分别穿过前两个和后两个点.来判断直线L1和L2的关系 这三种关系一个一个来看: 1. 共线. 如果两条直线共线的话,那么另外一条直线上的点一定在这一条直线上.所以p3在p1p2上,所以用get_direction(p1, p2, p3)来判断p3相对于p1p2的关

POJ 1269 - Intersecting Lines 直线与直线相交

题意:    判断直线间位置关系: 相交,平行,重合 1 include <iostream> 2 #include <cstdio> 3 using namespace std; 4 struct Point 5 { 6 int x , y; 7 Point(int a = 0, int b = 0) :x(a), y(b) {} 8 }; 9 struct Line 10 { 11 Point s, e; 12 int a, b, c;//a>=0 13 Line() {

poj 1269 Intersecting Lines——叉积求直线交点坐标

题目:http://poj.org/problem?id=1269 相关知识: 叉积求面积:https://www.cnblogs.com/xiexinxinlove/p/3708147.html什么是叉积:https://blog.csdn.net/sunbobosun56801/article/details/78980467        其二维:https://blog.csdn.net/qq_38182397/article/details/80508303计算交点:    方法1:面