MongoDB入门学习(四):MongoDB的索引

上一篇讲到了MongoDB的基本操作增删查改,对于查询来说,必须按照我们的查询要求去集合中,并将查找到的结果返回,在这个过程中其实是对整个集合中每个文档进行了扫描,如果满足我们的要求就添加到结果集中最后返回。对于小集合来说,这个过程没什么,但是集合中数据很大的时候,进行表扫描是一个非常恐怖的事情,于是有了索引一说,索引是用来加速查询的,相当于书籍的目录,有了目录可以很精准的定位要查找内容的位置,从而减少无谓的查找。

1.索引的类型

创建索引可以是在单个字段上,也可以是在多个字段上,这个根据自己的实际情况来选择,创建索引时字段的顺序也是有讲究的。创建索引是通过ensureIndex()方法,需要给该方法传递一个文档形式的数据,其中指定索引的字段和顺序,1代表升序,-1代表降序。

1).默认索引

还记得"_id"吗,这个字段的数据是不能重复的,它就是MongoDB的默认索引,而且不能被删除。

2).单列索引

在单个字段上创建的索引就是单列索引,在查询的过程中可以对该加速对该键的查询,然而对其他键的查询是没有帮助的。单列索引的顺序是不会影响对该键的随即查询,创建单列索引:

> db.people.ensureIndex({"name" : 1})

3).组合索引

还可以在多个键上创建组合索引,此时键的位置和索引的顺序都会影响查询的效率,看下面创建组合索引:

> db.people.ensureIndex({"name" : 1, "age" : 1})
> db.people.ensureIndex({"age" : 1, "name" : 1})

第一种情况会对name排序组织,当name一样时在对age排序,所以对{"name" : 1}和{“name” : 1, "age" : 1}的查询更高效,而第二种情况则对age排序,当age一样再对name排序,所以对{"age" : 1}和{"age" : 1, "name" : 1}的查询更高效。当组合索引包含很多字段的时候,会对前几个键的查询有帮助。

4).内嵌文档索引

还可以对内嵌文档创建索引,和普通键创建索引一样差不多,也可以对内嵌文档创建组合索引:

> db.people.ensureIndex({"friends.name" : 1})
> db.people.ensureIndex({"friends.name" : 1, "friends.age" : 1})

在来看看其他几种形式的索引:

唯一索引
> db.people.ensureIndex({"name" : 1}, {"unique" : true})
> db.people.ensureIndex({"name" : 1}, {"unique" : true, "dropDups" : true})
松散索引
> db.people.ensureIndex({"name" : 1}, {"sparse" : true})
多值索引
> db.people.find()
{"name" : ["mary", "rose"]}
> db.people.ensureIndex({"name" : 1})

唯一索引unique可以保证该键对应的值在集合中是唯一的,如果创建唯一索引的时候,该字段原来就存在了重复的数据,那么就会创建失败,可以加上dropDups字段来消除重复数据,它会保留发现的第一个文档,其他有重复数据的文档都将被删除。

集合中有的文档不存在某些字段,或者某些字段的值为null,那么我们在该字段上创建索引的时候不希望让这些空值的文档参与,那么就定义为松散索引sparse,比如在name上创建索引时,发现有的人在数据库中只有学号,没有名字,那么我们不希望把它们也包含进来,此时就定义为松散索引。

一个键对应的值是一个数组,在该键上创建索引时是一个多值索引,会为数组中每个值生成一个索引元素,相当于分裂成了几个独立的索引项,但是它们还是对应同一个文档数据。

2.索引的管理

索引固然是为查询而生,而且可以为每个键都创建索引,但是索引是需要存储空间的,所以索引不是越多越好,而且创建索引后,每次的插入,更新和删除文档都会产生额外的开销,因为数据库中不但要执行这些操作,而且还要在集合索引中标记这些操作。所以要根据实际情况来创建索引,索引没用之后将其删除。

创建索引是ensureIndex()方法,创建完成后可以通过getIndexes()来查看集合中创建的索引情况:

> db.people.ensureIndex({"name" : 1, "age" : 1})
> db.people.getIndexes()
[
        {
                "v" : 1,
                "key" : {
                        "_id" : 1
                },
                "ns" : "test.people",
                "name" : "_id_"
        },
        {
                "v" : 1,
                "key" : {
                        "name" : 1,
                        "age" : 1
                },
                "ns" : "test.people",
                "name" : "name_1_age_1"
        }
]

可以看到people集合创建了两个索引,一个是"_id",这个是默认索引,另外一个是name和age的组合索引,名字为keyname1_dir_keyname2_dir_...,keyname代表索引的键,dir代表方向,1代表升序,-1代表降序。当然我们也可以自定义索引的名称:

> db.people.ensureIndex({"name" : 1, "age" : 1}, {"name" : "myIndex"})
> db.people.getIndexes()
[
        {
                "v" : 1,
                "key" : {
                        "_id" : 1
                },
                "ns" : "test.people",
                "name" : "_id_"
        },
        {
                "v" : 1,
                "key" : {
                        "name" : 1,
                        "age" : 1
                },
                "ns" : "test.people",
                "name" : "myIndex"
        }
]

删除索引是通过dropIndex():

方式一:
> db.people.dropIndex({"name" : 1, "age" : 1})
{ "nIndexesWas" : 2, "ok" : 1 }
方式二:
> db.runCommand({"dropIndexes" : "people", "index" : "myIndex"})
{ "nIndexesWas" : 2, "ok" : 1 }

索引的元信息存储在每个数据库的system.indexes集合中,不能对其进行插入和删除文档的操作,只能通过ensureIndex和dropIndex进行。

> db.system.indexes.find()
{ "v" : 1, "key" : { "_id" : 1 }, "ns" : "test.people", "name" : "_id_" }
{ "v" : 1, "key" : { "name" : 1, "age" : 1 }, "ns" : "test.people", "name" : "myIndex" }

清空集合中所有的文档是不会将索引删除的,原来创建的索引依然存在,但是直接删除集合的话,该集合的索引也是会被删除的。

3.索引的效率

如果我们定义了很多的索引,那么MongoDB会根据我们的查询选项重新排序,并智能的选择一个最优的来使用,比如我们创建了{"name" : 1, "age" : 1}和{"age" : 1, "class" : 1}两个索引,但是我们的查询项为find({"age" : 10, "name" : "mary"}),那么MongoDB会自动重新排序为find({"name" : "mary", "age" : 10}),并且利用索引{"name" : 1, "age" : 1}来查询。

MongoDB提供了explain工具来帮助我们获得查询方面的很多有用信息,只要对游标调用这个方法就可以得到查询的细节。下面给math集合中添加10W个文档,再来看看使用索引前后的效率对比:

> var arr = [];
> for(var i = 0; i < 100000; i++){
... var doc = {};
... var value = Math.floor(Math.random() * 1000);
... doc["number"] = value;
... arr.push(doc);
... }
100000
> db.math.insert(arr)
> db.math.count()
100000
> db.math.find().limit(10)
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe5"), "number" : 462 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe6"), "number" : 123 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe7"), "number" : 90 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe8"), "number" : 46 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fe9"), "number" : 244 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fea"), "number" : 972 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61feb"), "number" : 925 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fec"), "number" : 110 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fed"), "number" : 739 }
{ "_id" : ObjectId("53a7f7c6e4fd24348ce61fee"), "number" : 945 }

通过for循环给arr数组中添加10W条数据,然后再批量插入这些数据到math集合中,查看前10条数据,因为是随即生成的值,所以number字段的值会有重复值,我们就来查询462这个值:

创建索引前:
> db.math.find({"number" : 462}).explain()
{
        "cursor" : "BasicCursor",
        "isMultiKey" : false,
        "n" : 94,
        "nscannedObjects" : 100000,
        "nscanned" : 100000,
        "nscannedObjectsAllPlans" : 100000,
        "nscannedAllPlans" : 100000,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 35,
        "indexBounds" : {

        },
        "server" : "server0.169:9352"
}
创建索引后:
> db.math.ensureIndex({"number" : 1})
> db.math.find({"number" : 462}).explain()
{
        "cursor" : "BtreeCursor number_1",
        "isMultiKey" : false,
        "n" : 94,
        "nscannedObjects" : 94,
        "nscanned" : 94,
        "nscannedObjectsAllPlans" : 94,
        "nscannedAllPlans" : 94,
        "scanAndOrder" : false,
        "indexOnly" : false,
        "nYields" : 0,
        "nChunkSkips" : 0,
        "millis" : 0,
        "indexBounds" : {
                "number" : [
                        [
                                462,
                                462
                        ]
                ]
        },
        "server" : "server0.169:9352"
}

这里来看一下有用的信息,"cursor"指用的哪个索引,"nscanned"代表查找了多少个文档,"n"指返回文档的数量,"millis"表示查询所花时间,单位是毫秒。可以看出创建索引前没有使用索引,在全部的文档中查询的,花费了35毫秒,而创建索引后,使用了number_1索引查询,索引存储在B树结构中,只在94个文档中查询,几乎不花时间。

如果有很多索引的话,MongoDB会自动选一个来查询,你也可以通过hint来强制使用某个索引,这里强制使用{"age" : 1, "name" : 1}这个索引:

> db.people.find({"age" : {"$gt" : 10}, "name" : "mary"}).hint({"age" : 1, "name" : 1})

MongoDB入门学习(四):MongoDB的索引

时间: 2024-12-25 01:53:45

MongoDB入门学习(四):MongoDB的索引的相关文章

MongoDB入门学习(三):MongoDB的增删查改

对于我们这种菜鸟来说,最重要的不是数据库的管理,也不是数据库的性能,更不是数据库的扩展,而是怎么用好这款数据库,也就是一个数据库提供的最核心的功能,增删查改. 因为MongoDB存储数据都是以文档的模式,所以在操作它的数据时,也是以文档为单位的.那么我们实现增删查改也是以文档为基础,不知道文档是什么的同学可以看看上篇介绍的基本概念. 1.插入文档 向MongoDB集合中插入文档的基本方法是insert: 单个插入 > document = {key : value} > db.collecti

MongoDB入门学习(二):MongoDB的基本概念和数据类型

上一篇讲了MongoDB的安装和管理,其中涉及到了一些概念,数据结构还有一些API的调用,不知道的没关系,其实很简单,这篇会简单介绍一下. 1.文档 文档是MongoDB的核心概念,多个键值对有序的放在一起就是一个文档,文档是MongoDB存储数据最基本的数据结构.对MongoDB都是以文档的形式来操作的,使用了一种类似JSON的二进制BSON数据格式,对API的调用都是传的文档参数.每种编程语言都有标示文档的数据结构,比如java的map,lua的table,python的dict等等,但是都

Objective C 快速入门学习四

类 1.合成存取器方法 @property   成员变量 @synthesize 成员变量 可以让编译器自动合成 设置和获取函数的方法,不用手动生成set成员变量,Get成员变量 @interface Complex : NSObject { int iReal,iImag; } @property  int iReal, iImag;  //合成存取器方法,第一部:@property标识属性 -(void)print; @end @implementation Complex @synthes

MongoDB入门学习(一)NoSQL了解

1. NoSQL 简史 NoSQL一词最早出现于1998年,是Carlo Strozzi开发的一个轻量.开源.不提供SQL功能的关系数据库. 2009年,Last.fm的Johan Oskarsson发起了一次关于分布式开源数据库的讨论[2],来自Rackspace的Eric Evans再次提出了NoSQL的概念,这时的NoSQL主要指非关系型.分布式.不提供ACID的数据库设计模式. 2009年在亚特兰大举行的"no:sql(east)"讨论会是一个里程碑,其口号是"sel

MongoDB入门学习(1)

什么是MongoDB ? MongoDB 是由C++语言编写的,是一个基于分布式文件存储的开源数据库系统. 在高负载的情况下,添加更多的节点,可以保证服务器性能. MongoDB 旨在为WEB应用提供可扩展的高性能数据存储解决方案. MongoDB 将数据存储为一个文档,数据结构由键值(key=>value)对组成.MongoDB 文档类似于 JSON 对象.字段值可以包含其他文档,数组及文档数组. 主要特点 MongoDB的提供了一个面向文档存储,操作起来比较简单和容易. 你可以在MongoD

MongoDB入门学习(一):MongoDB的安装和管理

以前用MySQL数据库,整天都是写大堆大堆的SQL语句,要记住这些SQL关键字都要花好几天时间,写的蛋都爆了,当接触到MongoDB的时候,发现不用写SQL,瞬间觉得高大上,瞬间产生了学习使用它的冲动. 1.MongoDB简介 MongoDB是一种强大,灵活,可扩展的数据存储方式.它扩展了关系型数据库的众多有用功能,如辅助索引,范围查询和排序.MongoDB的功能非常丰富,比如内置的对MapReduce式聚合的支持,以及对地理空间索引的支持.还有很多很多的特点... 对于入门级别的人来说,上面说

NOSQL Mongo入门学习笔记 - MongoDB的安装(一)

手上的工作不是很忙,所以来学习学习很久就像接触的MongoDb,无奈前段时间工作时间都比较多.记录在这里供以后参考 环境: Centos 7 64位 开始: 1. 在官网下载Mongo : wget https://fastdl.mongodb.org/linux/mongodb-linux-x86_64-rhel70-3.0.3.tgz tar -zxvf mongodb-linux-x86_64-rhel70-3.0.3.tgz  在bin文件下有13个可执行程序. 其中./mongo为命令

MongoDB基础学习(一) MongoDB概念解析

.基础概念 SQL术语/概念 MongoDB术语/概念 说明 database database 数据库 table collection 数据表/集合 row document 数据记录行/文档 column field 数据字段/域 index index 索引 table joins   表连接,MongoDB不支持 primarg key primary key 主键 二.数据库 一个mongodb中可以建立多个数据库. MongoDB的默认数据库为"db",该数据库存储在da

Spring入门学习(四)

使用注解开发 在Spring4之后,要使用注解开发,必须要保证aop包的导入了,而且需要导入context约束,增加注解的支持! <?xml version="1.0" encoding="UTF-8"?> <beans xmlns="http://www.springframework.org/schema/beans" xmlns:xsi="http://www.w3.org/2001/XMLSchema-inst