基于Redis的Bloomfilter去重(转载)

转载:http://blog.csdn.net/bone_ace/article/details/53107018

前言

  “去重”是日常工作中会经常用到的一项技能,在爬虫领域更是常用,并且规模一般都比较大。去重需要考虑两个点:去重的数据量、去重速度。为了保持较快的去重速度,一般选择在内存中进行去重。

  1、数据量不大时,可以直接放在内存里面进行去重,例如python可以使用set()进行去重。

  2、当去重数据需要持久化时可以使用redis的set数据结构。

  3、当数据量再大一点时,可以用不同的加密算法先将长字符串压缩成 16/32/40 个字符,再使用上面两种方法去重;

  4、当数据量达到亿(甚至十亿、百亿)数量级时,内存有限,必须用“位”来去重,才能够满足需求。Bloomfilter就是将去重对象映射到几个内存“位”,通过几个位的 0/1值来判断一个对象是否已经存在。

  5、然而Bloomfilter运行在一台机器的内存上,不方便持久化(机器down掉就什么都没啦),也不方便分布式爬虫的统一去重。如果可以在Redis上申请内存进行Bloomfilter,以上两个问题就都能解决了。

代码

# coding=utf-8
import redis
from hashlib import md5

class SimpleHash(object):
    def __init__(self, cap, seed):
        self.cap = cap
        self.seed = seed

    def hash(self, value):
        ret = 0
        for i in range(len(value)):
            ret += self.seed * ret + ord(value[i])
        return (self.cap - 1) & ret

class BloomFilter(object):
    def __init__(self, host=‘localhost‘, port=6379, db=0, blockNum=1, key=‘bloomfilter‘):
        """
        :param host: the host of Redis
        :param port: the port of Redis
        :param db: witch db in Redis
        :param blockNum: one blockNum for about 90,000,000; if you have more strings for filtering, increase it.
        :param key: the key‘s name in Redis
        """
        self.server = redis.Redis(host=host, port=port, db=db)
        self.bit_size = 1 << 31  # Redis的String类型最大容量为512M,现使用256M
        self.seeds = [5, 7, 11, 13, 31, 37, 61]
        self.key = key
        self.blockNum = blockNum
        self.hashfunc = []
        for seed in self.seeds:
            self.hashfunc.append(SimpleHash(self.bit_size, seed))

    def isContains(self, str_input):
        if not str_input:
            return False
        m5 = md5()
        m5.update(str_input)
        str_input = m5.hexdigest()
        ret = True
        name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
        for f in self.hashfunc:
            loc = f.hash(str_input)
            ret = ret & self.server.getbit(name, loc)
        return ret

    def insert(self, str_input):
        m5 = md5()
        m5.update(str_input)
        str_input = m5.hexdigest()
        name = self.key + str(int(str_input[0:2], 16) % self.blockNum)
        for f in self.hashfunc:
            loc = f.hash(str_input)
            self.server.setbit(name, loc, 1)

if __name__ == ‘__main__‘:

    bf = BloomFilter()
    if bf.isContains(‘http://www.baidu.com‘):   # 判断字符串是否存在
        print ‘exists!‘
    else:
        print ‘not exists!‘
        bf.insert(‘http://www.baidu.com‘)

说明

  1、Bloomfilter算法如何使用位去重,这个百度上有很多解释。简单点说就是有几个seeds,现在申请一段内存空间,一个seed可以和字符串哈希映射到这段内存上的一个位,几个位都为1即表示该字符串已经存在。

    插入的时候也是,将映射出的几个位都置为1。

  2、需要提醒一下的是Bloomfilter算法会有漏失概率,即不存在的字符串有一定概率被误判为已经存在。这个概率的大小与seeds的数量、申请的内存大小、去重对象的数量有关。下面有一张表,m表示内存大小(多少个位),

   n表示去重对象的数量,k表示seed的个数。例如我代码中申请了256M,即1<<31(m=2^31,约21.5亿),seed设置了7个。看k=7那一列,当漏失率为8.56e-05时,m/n值为23。所以n = 21.5/23 = 0.93(亿),

   表示漏失概率为8.56e-05时,256M内存可满足0.93亿条字符串的去重。同理当漏失率为0.000112时,256M内存可满足0.98亿条字符串的去重。

  

  3、基于Redis的Bloomfilter去重,其实就是利用了Redis的String数据结构,但Redis一个String最大只能512M,所以如果去重的数据量大,需要申请多个去重块(代码中blockNum即表示去重块的数量)。

  4、代码中使用了MD5加密压缩,将字符串压缩到了32个字符(也可用hashlib.sha1()压缩成40个字符)。它有两个作用,一是Bloomfilter对一个很长的字符串哈希映射的时候会出错,经常误判为已存在,

    压缩后就不再有这个问题;二是压缩后的字符为 0~f 共16中可能,我截取了前两个字符,再根据blockNum将字符串指定到不同的去重块进行去重。

总结

    基于redis的Bloomfilter去重,既用上了Bloomfilter的海量去重能力,又用上了Redis的可持久化能力,基于Redis也方便分布式机器的去重。在使用的过程中,要预算好待去重的数据量,则根据上面的表,

  适当地调整seed的数量和blockNum数量(seed越少肯定去重速度越快,但漏失率越大)。

    另外针对基于Scrapy+Redis框架的爬虫,我使用Bloomfilter作了一些优化,只需替换scrapy_redis模块即可使用Bloomfilter去重,并且去重队列和种子队列可以拆分到不同的机器上,

  详情见:《scrapy_redis去重优化(已有7亿条数据),附Demo福利》,代码见:Scrapy_Redis_Bloomfilter

时间: 2024-12-23 07:39:43

基于Redis的Bloomfilter去重(转载)的相关文章

基于Redis的BloomFilter算法去重

BloomFilter算法及其适用场景 BloomFilter是利用类似位图或者位集合数据结构来存储数据,利用位数组来简洁的表示一个集合,并且能够快速的判断一个元素是不是已经存在于这个集合.因为基于Hash来计算数据所在位置,所以BloomFilter的添加和查询操作都是O(1)的.因为存储简洁,这种数据结构能够利用较少的内存来存储海量的数据.那么,还有这种时间和空间两全其美的算法?当然不是,BloomFilter正是它的高效(使用Hash)带来了它的判断不一定是正确的,也就是说准确率不是100

转载:基于Redis实现分布式锁

转载:基于Redis实现分布式锁  ,出处: http://blog.csdn.net/ugg/article/details/41894947 背景在很多互联网产品应用中,有些场景需要加锁处理,比如:秒杀,全局递增ID,楼层生成等等.大部分的解决方案是基于DB实现的,Redis为单进程单线程模式,采用队列模式将并发访问变成串行访问,且多客户端对Redis的连接并不存在竞争关系.其次Redis提供一些命令SETNX,GETSET,可以方便实现分布式锁机制. Redis命令介绍使用Redis实现分

转载自haier_jiang的专栏基于redis分布式缓存实现

简单说明下,写此文章算是对自己近一段工作的总结,希望能对你有点帮助,同时也是自己的一点小积累. 一.为什么选择redis 在项目中使用redis做为缓存,还没有使用memcache,考虑因素主要有两点: 1.redis丰富的数据结构,其hash,list,set以及功能丰富的String的支持,对于实际项目中的使用有很大的帮忙.(可参考官网redis.io) 2.redis单点的性能也非常高效(利用项目中的数据测试优于memcache). 基于以上考虑,因此选用了redis来做为缓存应用. 二.

[转载] 基于Redis实现分布式消息队列

转载自http://www.linuxidc.com/Linux/2015-05/117661.htm 1.为什么需要消息队列?当系统中出现“生产“和“消费“的速度或稳定性等因素不一致的时候,就需要消息队列,作为抽象层,弥合双方的差异. 举个例子:业务系统触发短信发送申请,但短信发送模块速度跟不上,需要将来不及处理的消息暂存一下,缓冲压力. 再举个例子:调远程系统下订单成本较高,且因为网络等因素,不稳定,攒一批一起发送. 再举个栗子,交互模块5:00到24:00和电商系统联通,和内部ERP断开.

基于Redis的三种分布式爬虫策略

前言: 爬虫是偏IO型的任务,分布式爬虫的实现难度比分布式计算和分布式存储简单得多. 个人以为分布式爬虫需要考虑的点主要有以下几个: 爬虫任务的统一调度 爬虫任务的统一去重 存储问题 速度问题 足够"健壮"的情况下实现起来越简单/方便越好 最好支持"断点续爬"功能 Python分布式爬虫比较常用的应该是scrapy框架加上Redis内存数据库,中间的调度任务等用scrapy-redis模块实现. 此处简单介绍一下基于Redis的三种分布式策略,其实它们之间还是很相似

基于redis排行榜的实战总结

前言: 之前写过排行榜的设计和实现, 不同需求其背后的架构和设计模型也不一样. 平台差异, 有的立足于游戏平台, 为多个应用提供服务, 有的仅限于单个游戏.排名范围差异, 有的面向全局排名, 有的只做朋友圈排名. 实时性差异, 离线统计有之, 实时排名更常见. 不管如何, 本文将结合之前写的网页闯关游戏, 来具体阐述基于redis排行榜的实战过程. 相关文章系列: 之前写过两篇关于排行榜的文章, 不过那是针对游戏平台(类似微信, 手Q等)而言的. 每个用户都有自己的排行榜, 不是全局性的. •

Java 实现基于Redis的分布式可重入锁

如何实现可重入? 首先锁信息(指redis中lockKey关联的value值) 必须得设计的能负载更多信息,之前non-reentrant时value直接就是一个超时时间,但是要实现可重入单超时时间是不够的,必须要标识锁是被谁持有的,也就是说要标识分布式环境中的线程,还要记录锁被入了多少次. 如何在分布式线程中标识唯一线程? MAC地址 +jvm进程 + 线程ID(或者线程地址都行),三者结合即可唯一分布式环境中的线程.下载 实现 锁的信息采用json存储,格式如下: 代码框架还是和之前实现的非

【php】基于Redis的js、css缓存类

<?php /* *基于Redis的js.css缓存类(有效解决tp等框架访问public出现的各种问题) *Written by Radish 2015.8.16 */ define('REDIS_HOST', '127.0.0.1'); define('REDIS_PORT', 6379); // class im { function __construct() { $this->redis = new Redis(); $this->redis->connect(REDIS

一个基于redis和disque实现的轻量级异步任务执行器

简介 horae是一个基于redis和disque实现的轻量级.高性能的异步任务执行器,它的核心是disque提供的任务队列,而队列有先进先出的时序关系,顾得名:horae. horae : 时序女神,希腊神话中司掌季节时间和人间秩序的三女神,又译"荷莱". horae的关注点不是队列服务的实现本身(已经有不少队列服务的实现了),而是希望借助于redis与disque提供的纯内存的高性能的队列机制,实现一个异步任务执行器.它可以自由配置任务来自哪种队列服务,它不关注任务执行的最终状态(