POJ 1306.Combinations

Combinations

Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%I64d & %I64u

SubmitStatusPracticePOJ 1306

Description

Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challenges are the stuff of contests. Therefore, you are to make just such a computation given the following: 
GIVEN: 5 <= N <= 100; 5 <= M <= 100; M <= N 
Compute the EXACT value of: C = N! / (N-M)!M! 
You may assume that the final value of C will fit in a 32-bit Pascal LongInt or a C long. For the record, the exact value of 100! is: 
93,326,215,443,944,152,681,699,238,856,266,700,490,715,968,264,381,621, 468,592,963,895,217,599,993,229,915,608,941,463,976,156,518,286,253, 697,920,827,223,758,251,185,210,916,864,000,000,000,000,000,000,000,000

Input

The input to this program will be one or more lines each containing zero or more leading spaces, a value for N, one or more spaces, and a value for M. The last line of the input file will contain a dummy N, M pair with both values equal to zero. Your program should terminate when this line is read.

Output

The output from this program should be in the form: 
N things taken M at a time is C exactly.

Sample Input

100  6
20  5
18  6
0  0

Sample Output

100 things taken 6 at a time is 1192052400 exactly.
20 things taken 5 at a time is 15504 exactly.
18 things taken 6 at a time is 18564 exactly.

题目题意比较简单 计算N!/(N-M)!M!

关键在于数值的计算上

尽管最后结果我们或许可以保存下,但是其中间要乘到很大的数再除下去,因此要尽可能让中间数小

由于N>M,我们可以剩下很大一部分乘法,只需计算N*(N-1)*······*(M+2)*(M+1)

因此,比较下M和N-M,选择其中较大的与N!约分

然后在计算另一部分,分母和分子同时乘数,每乘一次进行一次约分(gcd)

这样就能在不溢出的情况下计算出我们想要的答案

 1 /*
 2 By:OhYee
 3 Github:OhYee
 4 Email:[email protected]
 5 Blog:http://www.cnblogs.com/ohyee/
 6
 7 かしこいかわいい?
 8 エリーチカ!
 9 要写出来Хорошо的代码哦~
10 */
11 #include <cstdio>
12 #include <algorithm>
13 #include <cstring>
14 #include <cmath>
15 #include <string>
16 #include <iostream>
17 #include <vector>
18 #include <list>
19 #include <queue>
20 #include <stack>
21 using namespace std;
22
23 //DEBUG MODE
24 #define debug 0
25
26 //循环
27 #define REP(n) for(int o=0;o<n;o++)
28
29 unsigned long long gcd(unsigned long long a, unsigned long long b) {
30     return b == 0 ? a : gcd(b, a%b);
31 }
32
33 bool Do() {
34     int n, m;
35     if (scanf("%d%d", &n, &m), n == 0 && m == 0)
36         return false;
37
38     unsigned long long ans = 1;
39     int a = max(m, n - m);
40     int b = min(m, n - m);
41     unsigned long long t = 1;
42     for (int i = n, j = 2; i > a; i--, j++) {
43         ans *= i;
44         if (j <= b || t > 1) {
45             if (j <= b)
46                 t *= j;
47             if (t > 1) {
48                 unsigned long long q = gcd(ans, t);
49                 ans /= q;
50                 t /= q;
51             }
52         }
53
54     }
55
56
57     printf("%d things taken %d at a time is %llu exactly.\n", n, m, ans);
58
59     return true;
60 }
61
62
63 int main() {
64     while (Do());
65     return 0;
66 }
时间: 2024-10-12 04:29:34

POJ 1306.Combinations的相关文章

POJ 1306 Combinations 高精度乘法

题目大意:给出mn,让你求C(m,n). 思路:公式都给你了,就100,暴力就可以关键还是高精度.如果按照算法"它让你怎么做你就怎么做",那么很显然你需要写一个高精度除法.然而可以证明,这个除法是不会产生余数的.所以我们可以数论分析,然后避免高精度除法. 方法就是暴力求每个数的质因数,然后把被除数和除数相同的质因数消去,最后除数肯定会被消没.这样只要做高精度乘法就可以了. CODE: #include <cstdio> #include <cstring> #i

POJ 1306 暴力求组合数

Combinations Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 11049   Accepted: 5013 Description Computing the exact number of ways that N things can be taken M at a time can be a great challenge when N and/or M become very large. Challen

POJ 1306

其实求的这个数的式子化简一下,就是C(N,M)..... #include <iostream> #include <algorithm> #include <cstdio> #define LL __int64 using namespace std; LL N,M; LL myc(LL n,LL r){ LL sum=1; for(LL i=1;i<=r;i++) sum=sum*(n-r+i)/i; return sum; } int main(){ whi

ACM训练方案-POJ题目分类

ACM训练方案-POJ题目分类 博客分类: 算法 ACM online Judge 中国: 浙江大学(ZJU):http://acm.zju.edu.cn/ 北京大学(PKU):http://acm.pku.edu.cn/JudgeOnline/ 杭州电子科技大学(HDU):http://acm.hdu.edu.cn/ 中国科技大学(USTC):http://acm.ustc.edu.cn/ 北京航天航空大学(BUAA)http://acm.buaa.edu.cn/oj/index.php 南京

转载:poj题目分类(侵删)

转载:from: POJ:http://blog.csdn.net/qq_28236309/article/details/47818407 按照ac的代码长度分类(主要参考最短代码和自己写的代码) 短代码:0.01K–0.50K:中短代码:0.51K–1.00K:中等代码量:1.01K–2.00K:长代码:2.01K以上. 短:1147.1163.1922.2211.2215.2229.2232.2234.2242.2245.2262.2301.2309.2313.2334.2346.2348

poj题库分类

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea

POJ题目(转)

http://www.cnblogs.com/kuangbin/archive/2011/07/29/2120667.html 初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (

Poj 题目分类

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea

POJ题目分类(转)

初期:一.基本算法:     (1)枚举. (poj1753,poj2965)     (2)贪心(poj1328,poj2109,poj2586)     (3)递归和分治法.     (4)递推.     (5)构造法.(poj3295)     (6)模拟法.(poj1068,poj2632,poj1573,poj2993,poj2996)二.图算法:     (1)图的深度优先遍历和广度优先遍历.     (2)最短路径算法(dijkstra,bellman-ford,floyd,hea