hihoCoder 1388 Periodic Signal(FFT)

【题目链接】 http://hihocoder.com/problemset/problem/1388

【题目大意】

给出A数列和B数列,求下图式子:

【题解】

  我们将多项式拆开,我们可以得到固定项A2和B2,以及变动项-2AB,所以现在只要最大化AB即可。我们发现将A序列倒置,B序列倍置,所得到的卷积序列中的最大值就是AB的最大值,但是考虑到精度问题,我们在所得到的卷积序列中只判断极值产生的位置而不是直接获得极值,最后我们从极值产生的位置直接计算答案即可。

【代码】

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
using namespace std;
typedef long long LL;
const int N=300000;
int n,pos[N];
namespace FFT{
    struct comp{
        double r,i;
        comp(double _r=0,double _i=0):r(_r),i(_i){}
        comp operator +(const comp&x){return comp(r+x.r,i+x.i);}
        comp operator -(const comp&x){return comp(r-x.r,i-x.i);}
        comp operator *(const comp&x){return comp(r*x.r-i*x.i,i*x.r+r*x.i);}
        comp conj(){return comp(r,-i);}
    }A[N],B[N];
    const double pi=acos(-1.0);
    void FFT(comp a[],int n,int t){
        for(int i=1;i<n;i++)if(pos[i]>i)swap(a[i],a[pos[i]]);
        for(int d=0;(1<<d)<n;d++){
            int m=1<<d,m2=m<<1;
            double o=pi*2/m2*t;
            comp _w(cos(o),sin(o));
            for(int i=0;i<n;i+=m2){
                comp w(1,0);
                for(int j=0;j<m;j++){
                    comp& A=a[i+j+m],&B=a[i+j],t=w*A;
                    A=B-t;
                    B=B+t;
                    w=w*_w;
                }
            }
        }if(t==-1)for(int i=0;i<n;i++)a[i].r/=n;
    }
    void mul(long long *a,long long *b,long long *c,int k){
        int i,j;
        for(i=0;i<k;i++)A[i]=comp(a[i],b[i]);
        j=__builtin_ctz(k)-1;
        for(int i=0;i<k;i++){pos[i]=pos[i>>1]>>1|((i&1)<<j);}
        FFT(A,k,1);
        for(int i=0;i<k;i++){
            j=(k-i)&(k-1);
            B[i]=(A[i]*A[i]-(A[j]*A[j]).conj())*comp(0,-0.25);
        }FFT(B,k,-1);
        for(int i=0;i<k;i++)c[i]=(long long)(B[i].r+0.5);
    }
}int T;
LL A[N],B[N],C[N],S,M;
int main(){
    scanf("%d",&T);
    while(T--){
        scanf("%d",&n);
        memset(A,0,sizeof(A));S=0;
        for(int i=0;i<n;i++)scanf("%lld",&A[n-i-1]);
        for(int i=0;i<n;i++)scanf("%lld",&B[i]),B[i+n]=B[i];
        int N=1; while(N<n*2)N<<=1;
        FFT::mul(A,B,C,N); M=0; int pos=0;
        for(int i=0;i<n;i++)if(C[n-1+i]>M)M=C[n-1+i],pos=n-1+i;
        for(int i=0;i<n;i++,pos--)S=S+(A[i]-B[pos])*(A[i]-B[pos]);
        printf("%lld\n",S);
    }return 0;
}

  

时间: 2024-10-18 13:33:51

hihoCoder 1388 Periodic Signal(FFT)的相关文章

hihocoder #1388 : Periodic Signal NTT&amp;FFT

传送门:hihocoder #1388 : Periodic Signal 先来几个大牛传送门:  (模板) NTT long long 版 解法一:因为我们知道FFT会精度不够,所以坚持用NTT,但是模数不够大,然后就一直GG,看来我们的搜索姿势也有问题,居然没有搜到上面大神的板子,真的是GG http://www.cnblogs.com/WABoss/p/5903927.html /*******************************************************

hihocoder 1388 Periodic Signal

Periodic Signal 时间限制:5000ms 单点时限:5000ms 内存限制:256MB Description Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling. One day, the device fel

hihoCoder #1388 : Periodic Signal ( 2016 acm 北京网络赛 F题)

时间限制:5000ms 单点时限:5000ms 内存限制:256MB 描述 Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling. One day, the device fell on the ground accidenta

HNU 12885 Bad Signal(模拟)

题目链接:http://acm.hnu.cn/online/?action=problem&type=show&id=12885&courseid=274 解题报告:一共有n个发射装置,有一个接收装置,接收装置能够正确接收并把接收到的信号准确的译码出来的条件是: Ti > 6 * (B +(T1 + T2 + .... Ti-1 + Ti+1.....Tn)) 然后Ti = si / (Pi - p) si是信号强度 pi - p的意思是发射器跟接收器之间的直线距离的平方 暴

hihocode #1388 : Periodic Signal NTT

#1388 : Periodic Signal 描述 Profess X is an expert in signal processing. He has a device which can send a particular 1 second signal repeatedly. The signal is A0 ... An-1 under n Hz sampling. One day, the device fell on the ground accidentally. Profes

快速傅里叶变换(FFT)

快速傅里叶变换(FFT)算法[详解] 快速傅里叶变换(Fast Fourier Transform)是信号处理与数据分析领域里最重要的算法之一.我打开一本老旧的算法书,欣赏了JW Cooley 和 John Tukey 在1965年的文章中,以看似简单的计算技巧来讲解这个东西. 本文的目标是,深入Cooley-Tukey  FFT 算法,解释作为其根源的"对称性",并以一些直观的python代码将其理论转变为实际.我希望这次研究能对这个算法的背景原理有更全面的认识. FFT(快速傅里叶

Hdu 1402 (FFT)

题目链接 A * B Problem Plus Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total Submission(s): 12490    Accepted Submission(s): 2206 Problem Description Calculate A * B. Input Each line will contain two integers A and

洛谷P3803 【模板】多项式乘法(FFT)

P3803 [模板]多项式乘法(FFT) 题目背景 这是一道FFT模板题 题目描述 给定一个n次多项式F(x),和一个m次多项式G(x). 请求出F(x)和G(x)的卷积. 输入输出格式 输入格式: 第一行2个正整数n,m. 接下来一行n+1个数字,从低到高表示F(x)的系数. 接下来一行m+1个数字,从低到高表示G(x))的系数. 输出格式: 一行n+m+1个数字,从低到高表示F(x)∗G(x)的系数. 输入输出样例 输入样例#1: 复制 1 2 1 2 1 2 1 输出样例#1: 复制 1

BZOJ[3527],[ZJOI2014]力(FFT)

BZOJ[3527],[ZJOI2014]力(FFT) 题意: 给出\(n\)个数\(q_i\),给出\(Fj\)的定义如下: \(F_j=\sum \limits _ {i < j} \frac{q_iq_j}{(i-j)^2}-\sum \limits _{i >j} \frac{q_iq_j}{(i-j)^2}.\) 令\(E_i=F_i/q_i\),求\(E_i\). 题解: 一开始没发现求\(E_i\)... 其实题目还更容易想了... \(E_i=\sum\limits _{j&l