深入理解ByteBuffer

ByteBuffer类是在Java NIO中常常使用的一个缓冲区类,使用它可以进行高效的IO操作,但是,如果对常用方法的理解有错误,那么就会出现意想不到的bug。

ByteBuffer类的常用方法

先来看看一个基本的程序

public void test() throws IOException
    {
        ByteBuffer buff = ByteBuffer.allocate(128);
        FileChannel fin = null;
        FileChannel fout = null;
        try
        {
            fin = new FileInputStream("filein").getChannel();
            fout = new FileOutputStream("fileout").getChannel();
            while(fin.read(buff) != -1) {
                buff.flip();
                fout.write(buff);
                buff.clear();
            }
        }
        catch (FileNotFoundException e)
        {

        } finally {
            try {
                if(fin != null) {
                    fin.close();
                }
                if(fout != null) {
                    fout.close();
                }
            } catch(IOException e) {
                throw e;
            }
        }
    }

在test方法中,首先通过ByteBuffer.allocate()方法分配了一段内存空间,作为缓存,allocate方法对缓存自动清零,然后打开一个输入文件管道fin和一个输出文件管道fout,在循环中先从fin读出数据存放到buff缓冲区中,再将buff缓冲中的内容写入fout。当然这对于先从文件中读,然后再写这样的场景,这不是高效的做法。

可以看到先从fin中读出数据后,首先要调用ByteBuffer.flip()方法,若将数据写入输出文件后,还要调用ByteBuffer.clear()方法,为什么要这样做呢?

ByteBuffer可以作为一个缓冲区,是因为它是内存中的一段连续的空间,在ByteBuffer对象内部定义了四个索引,分别是mark,position,limit,capacity,其中

  • mark用于对当前position的标记
  • position表示当前可读写的指针,如果是向ByteBuffer对象中写入一个字节,那么就会向position所指向的地址写入这个字节,如果是从ByteBuffer读出一个字节,那么就会读出position所指向的地址读出这个字节,读写完成后,position加1
  • limit是可以读写的边界,当position到达limit时,就表示将ByteBuffer中的内容读完,或者将ByteBuffer写满了。
  • capacity是这个ByteBuffer的容量,上面的程序中调用ByteBuffer.allocate(128)就表示创建了一个容量为capacity字节的ByteBuffer对象。

了解了这四个变量之后,再来看看前面的程序。之所以调用ByteBuffer.flip()方法是因为在向ByteBuffer写入数据后,position为缓冲区中刚刚读入的数据的最后一个字节的位置,flip方法将limit值置为position值,position置0,这样在调用get*()方法从ByteBuffer中取数据时就可以取到ByteBuffer中的有效数据,JDK中flip方法的代码如下:

public final Buffer flip() {
    limit = position;
    position = 0;
    mark = -1;
    return this;
}

在调用four.write(buff)时,就将buff缓冲区中的数据写入到输出管道,此时调用ByteBuffer.clear()方法为下次从管道中读取数据做准备,但是调用clear方法并不将缓冲区的数据清空,而是设置position,mark,limit这三个变量的值,JDK中clear方法的代码如下:

public final Buffer clear() {
    position = 0;
    limit = capacity;
    mark = -1;
    return this;
}

这个方法命名给人的感觉就是将数据清空了,但是实际上却不是的,它并没有清空缓冲区中的数据,而至重置了对象中的三个索引值,如果不清空的话,假设此次该ByteBuffer中的数据是满的,下次读取的数据不足以填满缓冲区,那么就会存在上一次已经处理的的数据,所以在判断缓冲区中是否还有可用数据时,使用ByteBuffer.hasRemaining()方法,在JDK中,这个方法的代码如下:

public final boolean hasRemaining() {
    return position < limit;
}

在该方法中,比较了position和limit的值,用以判断是否还有可用数据。

在ByteBuffer类中,还有个方法是compact,对于ByteBuffer,其子类HeapByteBuffer的compact方法实现是这样的:

public ByteBuffer compact() {
    System.arraycopy(hb, ix(position()), hb, ix(0), remaining());
    position(remaining());
    limit(capacity());
    return this;
}

如果position()方法返回当前缓冲区中的position值,remaining()方法返回limit与position这段区间的长度,JDK中的remaining()方法代码如下

public final int remaining() {
    return limit - position;
}

所以compact()方法中第一条语句作用是将数组hb当前position所指向的位置开始复制长度为limit-position的数据到hb数组的开始出,其中使用到了ix()函数,这个函数是将参数值加上一个offset值,offset即一个偏移值,在这样的比如一个这样的场景对于一个很大的缓冲区,将其分成两段,第一段的起始位置是p1,长度是q1,第二段起始位置是p2,长度是q2,那么可以分别将这两段包装成一个HeapByteBuffer对象,然后这两个HeapByteBuffer对象(ByteBuffer的子类,默认实现)的offset属性分别设置为p1和p2,这样就可以通过在内部使用ix()函数来简化ByteBuffer对外提供的接口,在使用者看来,与默认的ByteBuffer并没有区别。

在compact函数中,接着将当前的缓冲区的position索引置为limit-position,limit索引置为缓冲区的容量,这样调用compact方法中就可以将缓冲区的有效数据全部移到缓冲区的首部,而position指向下一个可写位置。

比如刚刚创建一个ByteBuffer对象buff时,position=0,limit=capacity,那么此时调用buff.hasRemaining()则会返回true,这样来判断缓冲区中是否有数据是不行的,因为此时缓冲区中的存储的全部是0,但是调用一次compact()方法就可以将position置为limit值,这样再通过buff.hasRemaining()就会返回false,可以与后面的逻辑一起处理了。

ByteBuffer还有一个名为mark的方法,该方法设置mark索引为position的值,JDK中的代码如下:

public final Buffer mark() {
    mark = position;
    return this;
}

与其功能相反的方法为reset方法,即将position的值设置为mark,JDK中的代码如下:

public final Buffer reset() {
    int m = mark;
    if (m < 0)
        throw new InvalidMarkException();
    position = m;
    return this;
}

此外还有一个名为rewind的方法,这个方法将position索引置为0,mark索引置为-1,JDK中的代码如下:

public final Buffer rewind() {
    position = 0;
    mark = -1;
    return this;
}

通过这些方法,就可以很方便的操作一个缓冲区,关键是要理解这些方法具体的作用,以及对三个索引值的影响(capacity是不变的)。

ByteBuffer继承自Buffer类,上面的方法四个索引值都定义在Buffer类中,操作索引值的方法也都定义在Buffer类中。

总结

通过对ByteBuffer中的四个索引值操作方法的分析,加深了对ByteBuffer的理解。理解ByteBuffer和其他几种Buffer的关键是要理解在使用中各个方法是如何操作索引值的,特别要注意的是clear方法并没有清除缓冲区的内容。

深入理解ByteBuffer,布布扣,bubuko.com

时间: 2024-08-08 21:56:19

深入理解ByteBuffer的相关文章

NIO 之 ByteBuffer

前言 对于刚接触ByteBuffer人来说,想要完全理解会稍微有点困难,正巧前几天有人问我,想到好久没写文章,就整理一下. 概念理解 对于ByteBuffer的一些概念不理解的情况下,如果直接打开源码,硬啃,是一种方法,但是对于有些耐心不足的同学,恐怕坚持不下去. 第一点,ByteBuffer底层的存储结构就是数组,所有的操作都是基于数组的操作.数组有哪几个重要的属性呢?元素索引和数组长度. 上面的图就简单的理解为一个数组. 既然ByteBuffer的存储结构为一个数组,那么就离不开索引位置和数

java ByteBuffer flip()和limit()的理解, 转载的, 从里面理解到flip()的作用, 想象一下 老式打字机

先列点代码片段: // ... // // 此段代码功能为从 t.txt 里复制所有数据到 out_j.txt: // ... 1 FileChannel fcin = new FileInputStream( "d:/t.txt" ).getChannel(); 2 FileChannel fcout = new FileOutputStream( new File( "d:/out_j.txt" )).getChannel();3 ByteBuffer buff

Android中直播视频技术探究之---基础核心类ByteBuffer解析

一.前言 前一篇文章我们介绍了Android中直播视频技术的基础大纲知识,这里就开始一一讲解各个知识点,首先主要来看一下视频直播中的一个重要的基础核心类:ByteBuffer,这个类看上去都知道了,是字节缓冲区处理字节的,这个类的功能非常强大,也在各个场景都有用到,比如网络数据底层处理,特别是结合网络通道信息处理的时候,还有就是后面要说到的OpenGL技术也要用到,当然在视频处理中也是很重要的,因为要处理视频流信息,比如在使用MediaCodec进行底层的视频流编码的时候,处理的就是字节,我们如

NIO byteBUffer 讲解 及Mina 源码分析

1.传统的socket: 阻塞式通信模式 tcp连接: 与服务器连接时 .必须等到连接成功后 才返回 . udp连接: 客户端发送数据 ,必须等到发送成功后返回 . 每建立一个 Scoket连接时, 同事创建一个新线程对该 Socket进行单独通信(采用阻塞式通信 ) 这种方式具有很高的响应速度,并且控制起来也很简单,在连接数较少的时候非常有效,但是如果 对每一个连接都产生一个线程的无疑是对系统资源的一种浪费,如果连接数较多将会出现资源不足的情况 2.1NIO 设计背后的基石:反应器模式,用于事

ByteBuffer常用方法详解

缓冲区(Buffer) 缓冲区(Buffer)就是在内存中预留指定大小的存储空间用来对输入/输出(I/O)的数据作临时存储,这部分预留的内存空间就叫做缓冲区: 使用缓冲区有这么两个好处: 1.减少实际的物理读写次数 2.缓冲区在创建时就被分配内存,这块内存区域一直被重用,可以减少动态分配和回收内存的次数 举个简单的例子,比如A地有1w块砖要搬到B地 由于没有工具(缓冲区),我们一次只能搬一本,那么就要搬1w次(实际读写次数) 如果A,B两地距离很远的话(IO性能消耗),那么性能消耗将会很大 但是

java的NIO包中ByteBuffer类的clear(),flip(),rewind()方法的意思

我们要澄清一点:这三个方法都是ByteBuffer的抽象基类Buffer定义的方法,ByteBuffer只是继承了它们. **************************************************** 其次,你要理解缓冲区的概念,就是Buffer的意义:缓冲区是特定基本类型元素的线性有限序列.除内容外,缓冲区的基本属性还包括容量.限制和位置: 缓冲区的容量 是它所包含的元素的数量.缓冲区的容量不能为负并且不能更改. 缓冲区的限制 是第一个不应该读取或写入的元素的索引.缓

Android OpenGL ES和OpenGL一起学(二)------理解Viewport(视口)和坐标系Android OpenGL ES篇(转帖)

? 来自:http://www.cnblogs.com/xiaobo68688/archive/2011/12/01/2269985.html ? 首先我们在屏幕中心显示一个矩形,效果如图: // 代码没有经过优化,为的是容易理解public class OpenGLTestActivity extends Activity { GLSurfaceView glView; @Override public void onCreate(Bundle savedInstanceState) { su

《深入理解SPARK:核心思想与源码分析》——SparkContext的初始化(中)

<深入理解Spark:核心思想与源码分析>一书前言的内容请看链接<深入理解SPARK:核心思想与源码分析>一书正式出版上市 <深入理解Spark:核心思想与源码分析>一书第一章的内容请看链接<第1章 环境准备> <深入理解Spark:核心思想与源码分析>一书第二章的内容请看链接<第2章 SPARK设计理念与基本架构> 由于本书的第3章内容较多,所以打算分别开辟三篇随笔分别展现. <深入理解Spark:核心思想与源码分析>一

Java ClassLoader加载机制理解 实际例子

针对 Java ClassLoader加载机制理解, 做了个如何自定制简单的ClassLoader,并成功加载指定的类. 不废话,直接上代码. package com.chq.study.cl; import java.io.ByteArrayOutputStream; import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOExcept