1925: [Sdoi2010]地精部落

1925: [Sdoi2010]地精部落

Time Limit: 10 Sec  Memory Limit: 64 MB
Submit: 1401  Solved: 869
[Submit][Status][Discuss]

Description

传说很久以前,大地上居住着一种神秘的生物:地精。 地精喜欢住在连绵不绝的山脉中。具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数。 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰。位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边)。 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷。 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中。地精的酒馆 不论白天黑夜总是人声鼎沸,地精美酒的香味可以飘到方圆数里的地方。 地精还是一种非常警觉的生物,他们在每座山峰上都可以设立瞭望台,并轮 流担当瞭望工作,以确保在第一时间得知外敌的入侵。 地精们希望这N 段山脉每段都可以修建瞭望台或酒馆的其中之一,只有满足 这个条件的整座山脉才可能有地精居住。 现在你希望知道,长度为N 的可能有地精居住的山脉有多少种。两座山脉A 和B不同当且仅当存在一个 i,使得 Ai≠Bi。由于这个数目可能很大,你只对它 除以P的余数感兴趣。

Input

仅含一行,两个正整数 N, P。

Output

仅含一行,一个非负整数,表示你所求的答案对P取余 之后的结果。

Sample Input

4 7

Sample Output

3

HINT

 
对于 20%的数据,满足 N≤10; 
对于 40%的数据,满足 N≤18; 
对于 70%的数据,满足 N≤550; 
对于 100%的数据,满足 3≤N≤4200,P≤109

Source

第一轮Day2

//思路比较难想到啊,连看题解,都看了很久才明白,有些人写的确实是很难理解。

参考博客:http://www.cnblogs.com/quzhizhou/p/7236727.html

思路是这样的 dp[i][j] 代表,1 -- i 的排列中,以 1 -- j 数字为开头,然后接着递减的序列有多少种,先看怎么转移

1.当开头 < j 时,显然是 dp[i][j-1]

2.当开头 = j 时,第二位要小于 j 所以必须是 1 -- j-1 ,然后接着上升的序列,然而似乎没有记录这种状态。。。

但其实,可以这么想,对于,dp[i][j] 的每一种排列,如果将每个数都用 n 减去,再加 1 ,就是以,n-x+1 为开头的递增序列了。

比如题目给的 2 1 4 3 ,可以变为 3 4 1 2 ,所以,每种都对应另一种开始时递增的序列。

所以,1 -- j-1 开头的递增序列,种数为 dp[i-1][i-(j+1)+1] ,即 dp[i-1][i-j]

为什么是 i-1 呢,因为,j 被选走了,j+1 ,j+2,j+3 ... i 这些数,每个数减一,在种数上就相当于 dp[i-1][i-j] 了

记得最后答案乘 2 ,求的是递减或递增的序列

 1 # include <cstdio>
 2 # include <cstring>
 3 # include <cstdlib>
 4 # include <iostream>
 5 # include <vector>
 6 # include <queue>
 7 # include <stack>
 8 # include <map>
 9 # include <bitset>
10 # include <set>
11 # include <cmath>
12 # include <algorithm>
13 using namespace std;
14 #define lowbit(x) ((x)&(-x))
15 #define pi acos(-1.0)
16 #define eps 1e-8
17 #define MOD 1000000007
18 #define INF 0x3f3f3f3f
19 #define LL long long
20 inline int Scan() {
21     int x=0,f=1; char ch=getchar();
22     while(ch<‘0‘||ch>‘9‘){if(ch==‘-‘) f=-1; ch=getchar();}
23     while(ch>=‘0‘&&ch<=‘9‘){x=x*10+ch-‘0‘; ch=getchar();}
24     return x*f;
25 }
26 inline void Out(int a) {
27     if(a<0) {putchar(‘-‘); a=-a;}
28     if(a>=10) Out(a/10);
29     putchar(a%10+‘0‘);
30 }
31 #define MX 4500
32 //Code begin...
33
34 int dp[2][MX];
35
36 int main()
37 {
38     int n = Scan();
39     int p = Scan();
40
41     memset(dp,0,sizeof(dp));
42     dp[1][1]=1;
43     for (int i=2;i<=n;i++)
44         for (int j=1;j<=i;j++)
45             dp[i&1][j]=(dp[i&1][j-1]+dp[(i-1)&1][i-j])%p;
46     cout<<dp[n&1][n]*2%p<<endl;
47     return 0;
48 }

时间: 2024-10-06 02:44:56

1925: [Sdoi2010]地精部落的相关文章

BZOJ 1925: [Sdoi2010]地精部落( dp )

和几天前校内的某场NOIP模拟赛T3一模一样... dp(i,j)表示1~i的排列中, 以1~j为开头且开头是下降的合法方案数 这种数列具有对称性, 即对于一个满足题意且开头是上升的n的排列{an}, 令bn = n-an+1, 那么{bn}就是一个满足题意且开头是下降的序列 dp(i,j) = dp(i,j-1) + dp(i-1,i-j+1). 前一个好理解, 就是求排列i, 1~j-1开头的, 后一种就是求以j开头, 那么原来的排列i-1应该以1~j-1开头, 但是开头又得是上升的(这样加

[BZOJ 1925][Sdoi2010]地精部落

1925: [Sdoi2010]地精部落 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1468  Solved: 918[Submit][Status][Discuss] Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这

bzoj 1925 [Sdoi2010]地精部落(DP)

Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰.位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边). 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷. 地精们有一个共同的爱好——饮酒,酒馆可以设立在山谷之中.地精的酒馆

【BZOJ】1925: [Sdoi2010]地精部落 DP+滚动数组

题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 题意:输入一个数N(1 <= N <= 4200),问将这些数排列成折线型有多少中合法的排列:折线形即一个数比相邻的数都大或者都小; 如:1 3 2 4就是一个折线型: 思路:f[i,j]表示排列的前i个数是以1...j为开头的第一位下降的合法个数: 转移公式为:f[i][j] = f[i][j-1] + f[i-1][i-j]; f[i][j-1]就不把第j个数添加到首位的原来

1925: [Sdoi2010]地精部落 dp, 抖动子序列

看到这道题第一反应就把该题与白书的一道例题联系起来了.(虽然后来证明两者并没有联系.)因此我一开始的思路就是从n到1一个个加进去.虽然的确搞不太出来. 然后开始膜题解了.………………………………好可耻啊! 首先可以证明.一个开头下降的抖动子序列 1~n 可以通过 n - xi + 1 (xi 为 第i位的值 )的形式变为一个上升的. 然后就利用这个性质搞了 设 f[i][j] 为长度为 i , 分别以 1~j 开头且开头上升(如果你要问我为什么是上升的你可以自己推一下,反正我推不出来.)的方案数

【BZOJ1925】[Sdoi2010]地精部落 组合数+DP

[BZOJ1925][Sdoi2010]地精部落 Description 传说很久以前,大地上居住着一种神秘的生物:地精. 地精喜欢住在连绵不绝的山脉中.具体地说,一座长度为 N 的山脉 H可分 为从左到右的 N 段,每段有一个独一无二的高度 Hi,其中Hi是1到N 之间的正 整数. 如果一段山脉比所有与它相邻的山脉都高,则这段山脉是一个山峰.位于边 缘的山脉只有一段相邻的山脉,其他都有两段(即左边和右边). 类似地,如果一段山脉比所有它相邻的山脉都低,则这段山脉是一个山谷. 地精们有一个共同的

[BZ1925] [SDOI2010]地精部落

[BZ1925] [SDOI2010]地精部落 传送门 一道很有意思的DP题. 我们发现因为很难考虑每个排列中的数是否使用过,所以我们想到只维护相对关系. 当我们考虑新的一个位置时,给新的位置的数分配一个排名(可以理解为把这个位置的大小插入在原来两个位置的大小的中间). 所以令\(dp[i][j][0/1]\)表示前i个数,第i个数在前i个数中排名为j,最后两个数是上升/下降时的相对关系的方案数. 那么有: \[ dp[i][j][0]=\sum_{k=1}^{j-1}dp[i-1][k][1]

bzoj1925 [[Sdoi2010] 地精部落【DP】

传送门:http://www.lydsy.com/JudgeOnline/problem.php?id=1925 一个多月前"过"了这道题,还自欺欺人地认为懂了这道题,这直接导致了昨晚多校联测2的T3爆炸,现在想来简直是道水题,不过还是要有"懂得这题怎么做"的前提...地精部落这道题可以约化为另一个问题:对于n的排列,告诉你每个数相比于前一个数是大了.小了.还是都可以,求这样的排列的方案数. 先说这一题叭,看过很多其他人的题解,依然是云里雾里,因此我会写的详细一点.

[bzoj1925][Sdoi2010]地精部落_递推_动态规划

地精部落 bzoj-1925 Sdoi-2010 题目大意:给你一个数n和模数p,求1~n的排列中满足每一个数的旁边两个数,要么一个是边界,要么都比它大,要么都比它小(波浪排列个数) 原文地址:https://www.cnblogs.com/ShuraK/p/9032651.html