动态规划入门-01背包问题 - poj3624

2017-08-12 18:50:13

writer:pprp

对于最基础的动态规划01背包问题,都花了我好长时间去理解;

poj3624是一个最基本的01背包问题:

题意:给你N个物品,给你一个容量为M的背包

  给你每个物品的重量,Wi

  给你每个物品的价值,Di

  求解在该容量下的物品最高价值?

分析:

  状态:

    dp[i][j] = a 剩下i件 当前容量为j的情况下的最大价值为a

  如果用 i 来枚举物品编号, 用 j 来枚举重量,那么

    if ( j is from 1 to weight[i] )  dp[i][j] = dp[i-1][j];

    if( j is from weight[i] to M) dp[i][j] = max{ dp[i-1][j] , dp[i-1][j - weight[i]] + value[i]}



代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<stack>

using namespace std;

const int maxnp = 3500;
const int maxnw = 13000;
int dp[maxnp][maxnw];
int value[maxnp];
int weight[maxnw];
int N, M;

void output();

void solve()
{
    memset(dp,0,sizeof(dp));

    for(int i = 1 ; i <= N ; i++)
    {
        for(int j = 1 ; j < weight[i] ; j++)
            dp[i][j] = dp[i-1][j];
        for(int v = weight[i] ; v <= M ; v++)
        {
            dp[i][v] = max(dp[i-1][v],dp[i-1][v-weight[i]]+value[i]);
        }
    }
}

int main()
{
    cin >> N >> M;

    for(int i = 1 ; i <= N; i++)
    {
        cin >> weight[i] >> value[i];
    }

    solve();

    cout << dp[N][M] <<endl;
}

然后可以从上边的这个部分:

for(int j = 1 ; j < weight[i] ; j++)
            dp[i][j] = dp[i-1][j];
        for(int v = weight[i] ; v <= M ; v++)
        {
            dp[i][v] = max(dp[i-1][v],dp[i-1][v-weight[i]]+value[i]);
        }

看出来有点冗余复杂,出现了MLE

现在重新定义一个状态:dp[i]表示重量剩余 i 的时候可以得到的最大价值

状态转移:dp[i] = max(dp[i], dp[i-weigth[j]]+value[j]);

代码如下:

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<queue>
#include<map>
#include<set>
#include<stack>

using namespace std;

const int maxnp = 3500;
const int maxnw = 13000;
int dp[maxnw];
int value[maxnp];
int weight[maxnw];
int N, M;

void solve()
{
      memset(dp,0,sizeof(dp));
      for(int i = 1; i <= N; i++)
      {
            for(int j = M ; j >= weight[i] ; j--)
            {
                  dp[j] = max(dp[j], dp[j-weight[i]] + value[i]);
            }
      }
      cout << dp[M] << endl;
}

int main()
{
    while(cin >> N >> M)
    {
          for(int i = 1 ; i <= N; i++)
          {
                cin >> weight[i] >> value[i];
          }
          solve();
    }
    return 0;
}

这个代码可以保证不会内存超限

这个是我第一次写出dp的代码,希望以后写的越来越好

时间: 2024-11-08 22:05:52

动态规划入门-01背包问题 - poj3624的相关文章

动态规划之01背包问题(最易理解的讲解)

01背包问题,是用来介绍动态规划算法最经典的例子,网上关于01背包问题的讲解也很多,我写这篇文章力争做到用最简单的方式,最少的公式把01背包问题讲解透彻. 01背包的状态转换方程 f[i,j] = Max{ f[i-1,j-Wi]+Pi( j >= Wi ),  f[i-1,j] } f[i,j]表示在前i件物品中选择若干件放在承重为 j 的背包中,可以取得的最大价值. Pi表示第i件物品的价值. 决策:为了背包中物品总价值最大化,第 i件物品应该放入背包中吗 ? 题目描述: 有编号分别为a,b

动态规划专题 01背包问题详解【转】

对于动态规划,每个刚接触的人都需要一段时间来理解,特别是第一次接触的时候总是想不通为什么这种方法可行,这篇文章就是为了帮助大家理解动态规划,并通过讲解基本的01背包问题来引导读者如何去思考动态规划.本文力求通俗易懂,无异性,不让读者感到迷惑,引导读者去思考,所以如果你在阅读中发现有不通顺的地方,让你产生错误理解的地方,让你难得读懂的地方,请跟贴指出,谢谢! 初识动态规划 经典的01背包问题是这样的: 有一个包和n个物品,包的容量为m,每个物品都有各自的体积和价值,问当从这n个物品中选择多个物品放

动态规划算法--01背包问题

基本思想: 动态规划算法通常用于求解具有某种最优性质的问题.在这类问题中,可能会有许多可行解.每一个解都对应于一个值,我们希望找到具有最优值的解.动态规划算法与分治法类似,其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的(即下一个子阶段的求解是建立在上一个子阶段的解的基础上,进行进一步的求解).若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很

动态规划求解0-1背包问题

0-1背包问题是: 一个背包能承受的最大容量为max_weight,  现在有n个物品, 它们的重量分别是{w1,w2,w3,......wn}, 和价值分别是{v1,v2,......vn}, 现在要求在满足背包装载的物品不超过最大容量的前提下,保证装载的物品的价值最大? 动态规划求解过程可以这样理解: 对于前i件物品,背包剩余容量为j时,所取得的最大价值(此时称为状态3)只依赖于两个状态. 状态1:前i-1件物品,背包剩余容量为j.在该状态下,只要不选第i个物品,就可以转换到状态3. 状态2

动态规划专题 01背包问题详解 HDU 2546 饭卡

我以此题为例,详细分析01背包问题,希望该题能够为初学者对01背包问题的理解有所帮助,有什么问题可以向我提供,一同进步^_^ 饭卡 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 14246    Accepted Submission(s): 4952 Problem Description 电子科大本部食堂的饭卡有一种很诡异的设计,即

动态规划之01背包问题(含代码C)

1.动态规划的基本思想 动态规划算法通常用于求解具有某种最优性质的问题.其基本思想也是将待求解问题分解成若干个子问题,先求解子问题,然后从这些子问题的解得到原问题的解.与分治法不同的是,适合于用动态规划求解的问题,经分解得到子问题往往不是互相独立的.若用分治法来解这类问题,则分解得到的子问题数目太多,有些子问题被重复计算了很多次.如果我们能够保存已解决的子问题的答案,而在需要时再找出已求得的答案,这样就可以避免大量的重复计算,节省时间.我们可以用一个表来记录所有已解的子问题的答案.不管该子问题以

【动态规划】01背包问题_两种解法

问题描述 0-1背包问题:给定\(n\)种物品和一背包.物品i的重量是\(w_i\),其价值为\(v_i\),背包的容量为\(C\).问:应该如何选择装入背包的物品,使得装人背包中物品的总价值最大? 在选择装人背包的物品时,对每种物品\(i\)只有两种选择,即装人背包或不装入背包.不能将物品\(i\)装入背包多次,也不能只装入部分的物品\(i\).因此,该问题称为0-1背包问题. 此问题的形式化描述是,给定\(C>0\),\(w_i>0\),\(v_i>0\),\(1≤i≤n\),要求找

动态规划之01背包问题

01背包问题 问题描述: 给定 n 件物品,物品的重量为 w[i],物品的价值为 c[i].现挑选物品放入背包中,假定背包能承受的最大重量为 V,问应该如何选择装入背包中的物品,使得装入背包中物品的总价值最大? 针对这个问题,本人理解了多次,也了看各种题解,尝试各种办法总还觉得抽象:或者说,看了多次以后,只是把题解的状态转移方程记住了而已,并没有真正的“掌握”其背后的逻辑.直到我看了这篇文章,在此感谢作者并记录于此. 01背包问题之另一种风格的描述: 假设你是一个小偷,背着一个可装下4磅东西的背

动态规划之 0-1背包问题及改进

有N件物品和一个容量为V的背包.第i件物品的重量是w[i],价值是v[i].求解将哪些物品装入背包可使这些物品的重量总和不超过背包容量,且价值总和最大.在选择装入背包的物品时,对于每种物品i,只能选择装包或不装包,不能装入多次,也不能部分装入,因此成为0-1背包问题. 形式化描述为:给定n个物品,背包容量C >0,重量 第i件物品的重量w[i]>0, 价值v[i] >0 , 1≤i≤n.要求找一n元向量(X1,X2,…,Xn,), Xi∈{0,1}, 使得 ∑(w[i] * Xi) ≤C