4.2 THE COMPLETENESS THEOREM: (4) The definition of canonical structure $\mathbf{\alpha}$ for $\mathbf{T}$

4.The definition of canonical structure $\mathbf{\alpha}$ for
$\mathbf{T}$

$\left\{

|α|={a°1,...,a°n,...}fα(a°1,...,a°n)=(fa1...an)°pα(a°1,...,a°n)iff?Tpa1...an

\right. $

where,the equivalence class of $\mathbf{a}$ is designated by
$\mathbf{a^{\circ}}$,i.e.,all the equivalence $\mathbf{a_1,b_1,...}$ is
designated by $\mathbf{a^{\circ}}$, that is,

$\mathbf{a_1^{\circ} \sim a_1 ,..., a_n^{\circ} \sim a_n}$

$\mathbf{a_1^{\circ} \sim b_1 ,..., a_n^{\circ} \sim b_n}$

...

We define $\mathbf{a \sim b}$ to mean $\mathbf{\vdash_{T}a=b}$.Then
$\mathbf{a \sim b}$ is an equivalence relation,that is,

$ \left\{

a~aa~b→(a~c?b~c)a~b→b~a

\right. $

Proof.

By the identity axioms, $\mathbf{\vdash_{T}a=a}$, we get $\mathbf{a \sim
a}$.

By the equality theorem, let $\mathbf{A‘}$ be obtained from $\mathbf{A}$
which means $\mathbf{a=c}$ by replacing $\mathbf{a}$ by $\mathbf{b}$. So if
$\mathbf{\vdash_{T}a=b}$, then $\mathbf{\vdash_{T}A \leftrightarrow A‘}$, i.e.,
$\mathbf{\vdash_{T}a=c \leftrightarrow b=c}$. $\mathbf{a=b \rightarrow (a=c
\leftrightarrow b=c)}$ is tautological consequence of $\mathbf{a=c
\leftrightarrow b=c}$, and $\mathbf{\vdash_{T}a=c \leftrightarrow b=c}$, then
$\mathbf{\vdash_{T}a=b \rightarrow (a=c \leftrightarrow b=c)}$ by tautology
theorem. That is,$\mathbf{a \sim b \rightarrow (a \sim c \leftrightarrow b \sim
c )}$

$\mathbf{\vdash_{T}a=b \rightarrow (a=c \leftrightarrow b=c)}\\ \Rightarrow
\mathbf{\vdash_{T}a=b \rightarrow (a=a \leftrightarrow b=a)}\\ \Rightarrow
\mathbf{\vdash_{T[a=b]} a=a \leftrightarrow b=a} \ \text{by deduction theorem}\\
\Rightarrow \mathbf{\vdash_{T[a=b]} b=c \quad \text{iff} \quad \vdash_{T[a=b]}
a=a} \ \text{by tautology theorem}\\ \Rightarrow \mathbf{\vdash_{T} a=b
\leftrightarrow b=c} \ \text{by deduction theorem}$

That is, $\mathbf{a \sim b \rightarrow b \sim a}$

4.2 THE COMPLETENESS THEOREM: (4) The definition of canonical
structure $\mathbf{\alpha}$ for $\mathbf{T}$,布布扣,bubuko.com

4.2 THE COMPLETENESS THEOREM: (4) The definition of canonical
structure $\mathbf{\alpha}$ for $\mathbf{T}$

时间: 2024-10-12 17:29:41

4.2 THE COMPLETENESS THEOREM: (4) The definition of canonical structure $\mathbf{\alpha}$ for $\mathbf{T}$的相关文章

4.2 THE COMPLETENESS THEOREM: (5) The right-hand sides depend only on the $\mathbf{a_i^{\circ}}$ and not on the $\mathbf{a_i}$

5.The right-hand sides of n-ary function and predicate definition in canonical structure depend only on the $\mathbf{a_i^{\circ}}$ and not on the $\mathbf{a_i}$ Proof. Suppose that $\mathbf{a_i^{\circ}=b_i^{\circ}}$ for i=1,...,n. Then $\mathbf{\vdas

4.2 THE COMPLETENESS THEOREM: (2) If A theory $\mathbf{T}$ has a model, then it is consistent.

4.2 THE COMPLETENESS THEOREM (2) If A theory $\mathbf{T}$ has a model, then it is consistent. Proof Suppose that $\mathbf{T}$ has a mode $\mathbf{\alpha}$. By definition of valid(P19), a formula $\mathbf{A}$ of $\mathbf{L}$ is valid in $\mathbf{\alph

pdfwin_slides

效果: slides.tex 1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 2 % 3 % Presentation for: 4 % 5 % Workshop on Adaptive Filters in Bucure\c{s}ti / Romania 6 % (March 2003) 7 % 8 % (c) Matthias M\"{u}hlich, 03/2003 9 % 10 %%%%%%%

(转载)Cross product

原文地址:https://en.wikipedia.org/wiki/Cross_product Cross product From Wikipedia, the free encyclopedia This article is about the cross product of two vectors in three-dimensional Euclidean space. For other uses, see Cross product (disambiguation). In m

Note for "Some Remarks on Writing Mathematical Proofs"

John M. Lee is a famous mathematician, who bears the reputation of writing the classical book "Introduction to Smooth Manifolds". In his article, "Some Remarks on Writing Mathematical Proofs", he gives us concrete and complete suggesti

Computability 6: Reducibility and NP Problems

1. Many-One Reducibility A problem is a set of numbers in computability theory. Problem $A$ is said to be m-reducible to problem $B$ ($A\leq_m B$) iff there exists a total computable function $f$ such that $x\in A\Leftrightarrow f(x)\in B$. This is t

中科院计算所论文模板

icmsec.cls \ProvidesClass{icmsec}[2006/05/09 v0.5, by Ge Xiangyang and Zhang Lin-bo] % % Class Options: % preprint - Preprint (default). TO BE IMPLEMENTED!!! % phd - PhD thesis (default) % master - Master thesis % makeindex - '\uepackage{makeidx}' an

【机器学习笔记】第一章:绪论

主要符号表: $x$ 标量 $\mathit{x}$ 向量 X 变量集 $\mathbf{A}$ 矩阵 $\mathbf{I}$ 单位阵 $\chi$ 样本空间或状态空间     $D$ 数据样本     $H$ 假设集 $\varepsilon$   学习算法 $\left \|  \cdot \right \|_p $ $L_p$范数,缺省为2 $sup\left(\cdot \right)$ 上确界 $\mathbb{I}\left( \cdot \right)$ 指示函数 $sign\l

Definition of matrix norms

In my previous post, I introduced various definitions of matrix norms in \(\mathbb{R}^{n \times n}\) based on the corresponding vector norms in \(\mathbb{R}^n\). Meanwhile, the equivalence of different vector norms and their induced metrics and topol