python多线程(三)

原文:http://www.cnblogs.com/tqsummer/archive/2011/01/25/1944771.html

一、Python中的线程使用:

Python中使用线程有两种方式:函数或者用类来包装线程对象。

1、  函数式:调用thread模块中的start_new_thread()函数来产生新线程。如下例:

import time
import thread
def timer(no, interval):
    cnt = 0
    while cnt<10:
        print ‘Thread:(%d) Time:%s\n‘%(no, time.ctime())
        time.sleep(interval)
        cnt+=1
    thread.exit_thread()  

def test(): #Use thread.start_new_thread() to create 2 new threads
    thread.start_new_thread(timer, (1,1))
    thread.start_new_thread(timer, (2,2))  

if __name__==‘__main__‘:
    test()  

上面的例子定义了一个线程函数timer,它打印出10条时间记录后退出,每次打印的间隔由interval参数决定。thread.start_new_thread(function, args[, kwargs])的第一个参数是线程函数(本例中的timer方法),第二个参数是传递给线程函数的参数,它必须是tuple类型,kwargs是可选参数。

线程的结束可以等待线程自然结束,也可以在线程函数中调用thread.exit()或thread.exit_thread()方法。

2、  创建threading.Thread的子类来包装一个线程对象,如下例:

import threading
import time
class timer(threading.Thread): #The timer class is derived from the class threading.Thread
    def __init__(self, num, interval):
        threading.Thread.__init__(self)
        self.thread_num = num
        self.interval = interval
        self.thread_stop = False  

    def run(self): #Overwrite run() method, put what you want the thread do here
        while not self.thread_stop:
            print ‘Thread Object(%d), Time:%s\n‘ %(self.thread_num, time.ctime())
            time.sleep(self.interval)
    def stop(self):
        self.thread_stop = True  

def test():
    thread1 = timer(1, 1)
    thread2 = timer(2, 2)
    thread1.start()
    thread2.start()
    time.sleep(10)
    thread1.stop()
    thread2.stop()
    return  

if __name__ == ‘__main__‘:
    test()  

就我个人而言,比较喜欢第二种方式,即创建自己的线程类,必要时重写threading.Thread类的方法,线程的控制可以由自己定制。

threading.Thread类的使用:

1,在自己的线程类的__init__里调用threading.Thread.__init__(self, name = threadname)

Threadname为线程的名字

2, run(),通常需要重写,编写代码实现做需要的功能。

3,getName(),获得线程对象名称

4,setName(),设置线程对象名称

5,start(),启动线程

6,jion([timeout]),等待另一线程结束后再运行。

7,setDaemon(bool),设置子线程是否随主线程一起结束,必须在start()之前调用。默认为False。

8,isDaemon(),判断线程是否随主线程一起结束。

9,isAlive(),检查线程是否在运行中。

此外threading模块本身也提供了很多方法和其他的类,可以帮助我们更好的使用和管理线程。可以参看http://www.python.org/doc/2.5.2/lib/module-threading.html

假设两个线程对象t1和t2都要对num=0进行增1运算,t1和t2都各对num修改10次,num的最终的结果应该为20。但是由于是多线程访问,有可能出现下面情况:在num=0时,t1取得num=0。系统此时把t1调度为”sleeping”状态,把t2转换为”running”状态,t2页获得num=0。然后t2对得到的值进行加1并赋给num,使得num=1。然后系统又把t2调度为”sleeping”,把t1转为”running”。线程t1又把它之前得到的0加1后赋值给num。这样,明明t1和t2都完成了1次加1工作,但结果仍然是num=1。

上面的case描述了多线程情况下最常见的问题之一:数据共享。当多个线程都要去修改某一个共享数据的时候,我们需要对数据访问进行同步。

1、  简单的同步

最简单的同步机制就是“锁”。锁对象由threading.RLock类创建。线程可以使用锁的acquire()方法获得锁,这样锁就进入“locked”状态。每次只有一个线程可以获得锁。如果当另一个线程试图获得这个锁的时候,就会被系统变为“blocked”状态,直到那个拥有锁的线程调用锁的release()方法来释放锁,这样锁就会进入“unlocked”状态。“blocked”状态的线程就会收到一个通知,并有权利获得锁。如果多个线程处于“blocked”状态,所有线程都会先解除“blocked”状态,然后系统选择一个线程来获得锁,其他的线程继续沉默(“blocked”)。

Python中的thread模块和Lock对象是Python提供的低级线程控制工具,使用起来非常简单。如下例所示:

import thread
import time
mylock = thread.allocate_lock()  #Allocate a lock
num=0  #Shared resource  

def add_num(name):
    global num
    while True:
        mylock.acquire() #Get the lock
        # Do something to the shared resource
        print ‘Thread %s locked! num=%s‘%(name,str(num))
        if num >= 5:
            print ‘Thread %s released! num=%s‘%(name,str(num))
            mylock.release()
            thread.exit_thread()
        num+=1
        print ‘Thread %s released! num=%s‘%(name,str(num))
        mylock.release()  #Release the lock.  

def test():
    thread.start_new_thread(add_num, (‘A‘,))
    thread.start_new_thread(add_num, (‘B‘,))  

if __name__== ‘__main__‘:
    test()

Python 在thread的基础上还提供了一个高级的线程控制库,就是之前提到过的threading。Python的threading module是在建立在thread module基础之上的一个module,在threading module中,暴露了许多thread module中的属性。在thread module中,python提供了用户级的线程同步工具“Lock”对象。而在threading module中,python又提供了Lock对象的变种: RLock对象。RLock对象内部维护着一个Lock对象,它是一种可重入的对象。对于Lock对象而言,如果一个线程连续两次进行acquire操作,那么由于第一次acquire之后没有release,第二次acquire将挂起线程。这会导致Lock对象永远不会release,使得线程死锁。RLock对象允许一个线程多次对其进行acquire操作,因为在其内部通过一个counter变量维护着线程acquire的次数。而且每一次的acquire操作必须有一个release操作与之对应,在所有的release操作完成之后,别的线程才能申请该RLock对象。

下面来看看如何使用threading的RLock对象实现同步。

import threading
mylock = threading.RLock()
num=0  

class myThread(threading.Thread):
    def __init__(self, name):
        threading.Thread.__init__(self)
        self.t_name = name  

    def run(self):
        global num
        while True:
            mylock.acquire()
            print ‘\nThread(%s) locked, Number: %d‘%(self.t_name, num)
            if num>=4:
                mylock.release()
                print ‘\nThread(%s) released, Number: %d‘%(self.t_name, num)
                break
            num+=1
            print ‘\nThread(%s) released, Number: %d‘%(self.t_name, num)
            mylock.release()  

def test():
    thread1 = myThread(‘A‘)
    thread2 = myThread(‘B‘)
    thread1.start()
    thread2.start()  

if __name__== ‘__main__‘:
    test()

我们把修改共享数据的代码成为“临界区”。必须将所有“临界区”都封闭在同一个锁对象的acquire和release之间。

2、  条件同步

锁只能提供最基本的同步。假如只在发生某些事件时才访问一个“临界区”,这时需要使用条件变量Condition。

Condition对象是对Lock对象的包装,在创建Condition对象时,其构造函数需要一个Lock对象作为参数,如果没有这个Lock对象参数,Condition将在内部自行创建一个Rlock对象。在Condition对象上,当然也可以调用acquire和release操作,因为内部的Lock对象本身就支持这些操作。但是Condition的价值在于其提供的wait和notify的语义。

条件变量是如何工作的呢?首先一个线程成功获得一个条件变量后,调用此条件变量的wait()方法会导致这个线程释放这个锁,并进入“blocked”状态,直到另一个线程调用同一个条件变量的notify()方法来唤醒那个进入“blocked”状态的线程。如果调用这个条件变量的notifyAll()方法的话就会唤醒所有的在等待的线程。

如果程序或者线程永远处于“blocked”状态的话,就会发生死锁。所以如果使用了锁、条件变量等同步机制的话,一定要注意仔细检查,防止死锁情况的发生。对于可能产生异常的临界区要使用异常处理机制中的finally子句来保证释放锁。等待一个条件变量的线程必须用notify()方法显式的唤醒,否则就永远沉默。保证每一个wait()方法调用都有一个相对应的notify()调用,当然也可以调用notifyAll()方法以防万一。

生产者与消费者问题是典型的同步问题。这里简单介绍两种不同的实现方法。

1,  条件变量

import threading  

import time  

class Producer(threading.Thread):  

    def __init__(self, t_name):  

        threading.Thread.__init__(self, name=t_name)  

    def run(self):  

        global x  

        con.acquire()  

        if x > 0:  

            con.wait()  

        else:  

            for i in range(5):  

                x=x+1  

                print "producing..." + str(x)  

            con.notify()  

        print x  

        con.release()  

class Consumer(threading.Thread):  

    def __init__(self, t_name):  

        threading.Thread.__init__(self, name=t_name)  

    def run(self):  

        global x  

        con.acquire()  

        if x == 0:  

            print ‘consumer wait1‘  

            con.wait()  

        else:  

            for i in range(5):  

                x=x-1  

                print "consuming..." + str(x)  

            con.notify()  

        print x  

        con.release()  

con = threading.Condition()  

x=0  

print ‘start consumer‘  

c=Consumer(‘consumer‘)  

print ‘start producer‘  

p=Producer(‘producer‘)  

p.start()  

c.start()  

p.join()  

c.join()  

print x

上面的例子中,在初始状态下,Consumer处于wait状态,Producer连续生产(对x执行增1操作)5次后,notify正在等待的Consumer。Consumer被唤醒开始消费(对x执行减1操作)

2,  同步队列

Python中的Queue对象也提供了对线程同步的支持。使用Queue对象可以实现多个生产者和多个消费者形成的FIFO的队列。

生产者将数据依次存入队列,消费者依次从队列中取出数据。

# producer_consumer_queue  

from Queue import Queue  

import random  

import threading  

import time  

#Producer thread  

class Producer(threading.Thread):  

    def __init__(self, t_name, queue):  

        threading.Thread.__init__(self, name=t_name)  

        self.data=queue  

    def run(self):  

        for i in range(5):  

            print "%s: %s is producing %d to the queue!\n" %(time.ctime(), self.getName(), i)  

            self.data.put(i)  

            time.sleep(random.randrange(10)/5)  

        print "%s: %s finished!" %(time.ctime(), self.getName())  

#Consumer thread  

class Consumer(threading.Thread):  

    def __init__(self, t_name, queue):  

        threading.Thread.__init__(self, name=t_name)  

        self.data=queue  

    def run(self):  

        for i in range(5):  

            val = self.data.get()  

            print "%s: %s is consuming. %d in the queue is consumed!\n" %(time.ctime(), self.getName(), val)  

            time.sleep(random.randrange(10))  

        print "%s: %s finished!" %(time.ctime(), self.getName())  

#Main thread  

def main():  

    queue = Queue()  

    producer = Producer(‘Pro.‘, queue)  

    consumer = Consumer(‘Con.‘, queue)  

    producer.start()  

    consumer.start()  

    producer.join()  

    consumer.join()  

    print ‘All threads terminate!‘  

if __name__ == ‘__main__‘:  

    main()  

在上面的例子中,Producer在随机的时间内生产一个“产品”,放入队列中。Consumer发现队列中有了“产品”,就去消费它。本例中,由于Producer生产的速度快于Consumer消费的速度,所以往往Producer生产好几个“产品”后,Consumer才消费一个产品。

Queue模块实现了一个支持多producer和多consumer的FIFO队列。当共享信息需要安全的在多线程之间交换时,Queue非常有用。Queue的默认长度是无限的,但是可以设置其构造函数的maxsize参数来设定其长度。Queue的put方法在队尾插入,该方法的原型是:

put( item[, block[, timeout]])

如果可选参数block为true并且timeout为None(缺省值),线程被block,直到队列空出一个数据单元。如果timeout大于0,在timeout的时间内,仍然没有可用的数据单元,Full exception被抛出。反之,如果block参数为false(忽略timeout参数),item被立即加入到空闲数据单元中,如果没有空闲数据单元,Full exception被抛出。

Queue的get方法是从队首取数据,其参数和put方法一样。如果block参数为true且timeout为None(缺省值),线程被block,直到队列中有数据。如果timeout大于0,在timeout时间内,仍然没有可取数据,Empty exception被抛出。反之,如果block参数为false(忽略timeout参数),队列中的数据被立即取出。如果此时没有可取数据,Empty exception也会被抛出。

python多线程(三)

时间: 2024-11-08 14:11:25

python多线程(三)的相关文章

Python进阶(三十四)-Python3多线程解读

Python进阶(三十四)-Python3多线程解读 线程讲解 ??多线程类似于同时执行多个不同程序,多线程运行有如下优点: 使用线程可以把占据长时间的程序中的任务放到后台去处理. 用户界面可以更加吸引人,这样比如用户点击了一个按钮去触发某些事件的处理,可以弹出一个进度条来显示处理的进度. 程序的运行速度可能加快. 在一些等待的任务实现上如用户输入.文件读写和网络收发数据等,线程就比较有用了.在这种情况下我们可以释放一些珍贵的资源如内存占用等等. ??线程在执行过程中与进程还是有区别的.每个独立

Python多线程锁

[Python之旅]第六篇(四):Python多线程锁 python lock 多线程 多线程使用方法 多线程锁 摘要:   在多线程程序执行过程中,为什么需要给一些线程加锁以及如何加锁,下面就来说一说. 1.给线程加锁的原因     我们知道,不同进程之间的内存空间数据是不能够共享的,试想一下,如果可以随意共享,谈何安全?但是一个进程中的多个线程是可以共享这个进程的内存空间中的数据的,比如多个线程可以同时调用某一... 在多线程程序执行过程中,为什么需要给一些线程加锁以及如何加锁,下面就来说一

Python多线程(threading)学习总结

注:此文除了例子和使用心得是自己写的,很多都是Python核心编程中的原文.原文文风应该能看出来,就不每个地方单独表明出处了. 线程(有时被称为轻量级进程)跟进程有些相似,不同的是,所有的线程运行在同一个进程中,共享相同的运行环境.它们可以想像成是在主进程或"主线程"中并行运行的"迷你进程". 线程有开始,顺序执行和结束三部分.它有一个自己的指令指针,记录自己运行到什么地方.线程的运行可能被抢占(中断),或暂时的被挂起(也叫睡眠),让其它的线程运行,这叫做让步.一个

python 多线程编程

一)线程基础 1.创建线程: thread模块提供了start_new_thread函数,用以创建线程.start_new_thread函数成功创建后还能够对其进行操作. 其函数原型: start_new_thread(function,atgs[,kwargs]) 其參数含义例如以下: function: 在线程中运行的函数名 args:元组形式的參数列表. kwargs: 可选參数,以字典的形式指定參数 方法一:通过使用thread模块中的函数创建新线程. >>> import th

【Python之旅】第六篇(四):Python多线程锁

    在多线程程序执行过程中,为什么需要给一些线程加锁以及如何加锁,下面就来说一说. 1.给线程加锁的原因 我们知道,不同进程之间的内存空间数据是不能够共享的,试想一下,如果可以随意共享,谈何安全?但是一个进程中的多个线程是可以共享这个进程的内存空间中的数据的,比如多个线程可以同时调用某一内存空间中的某些数据(只是调用,没有做修改). 试想一下,在某一进程中,内存空间中存有一个变量对象的值为num=8,假如某一时刻有多个线程需要同时使用这个对象,出于这些线程要实现不同功能的需要,线程A需要将n

Python多线程Selenium跨浏览器测试

前言 在web测试中,不可避免的一个测试就是浏览器兼容性测试,在没有自动化测试前,我们总是苦逼的在一台或多台机器上安装N种浏览器,然后手工在不同的浏览器上验证主业务流程和关键功能模块功能,以检测不同浏览器或不同版本浏览器上,我们的web应用是否可以正常工作. browser.png 下面我们看看怎么利用python selenium进行自动化的跨浏览器测试. 什么是跨浏览器测试 跨浏览器测试是功能测试的一个分支,用以验证web应用能在不同的浏览器上正常工作. 为什么需要跨浏览器测试 通常情况下,

python多线程应用——DB2数据库备份

前言:DB2一个实例下,可以存在多个数据库,之前使用shell备份脚本,但是同一时刻只能备份一个数据库,对于几百G的备份文件,这个速度显然太慢,今天学习了Python多线程,刚好应用一下. 分析:1.磁盘I/O允许情况下,使用多线程,节省时间,相当可行. 2.Python多线程在某些场景上是鸡肋,但是对于I/O密集型的场景最为适用,这里刚好. 3.thread模块有诸多问题,这里使用threading模块. 4.先前备份脚本修改端口来清理已连接应用,太过暴力,虽然都为冷备,但每次重启开销太大,这

Python 多线程教程:并发与并行

Python 多线程教程:并发与并行 在批评Python的讨论中,常常说起Python多线程是多么的难用.还有人对 global interpreter lock(也被亲切的称为“GIL”)指指点点,说它阻碍了Python的多线程程序同时运行.因此,如果你是从其他语言(比如C++或Java)转过来的话,Python线程模块并不会像你想象的那样去运行.必须要说明的是,我们还是可以用Python写出能并发或并行的代码,并且能带来性能的显著提升,只要你能顾及到一些事情.如果你还没看过的话,我建议你看看

【跟我一起学Python吧】Python 多线程

其实自我感觉Python的多线程很类似于Java的多线程机制,但是比JAVA的多线程更灵活.在早期的Python多线程实现中,采用了thread模块.例如: Python代码   from time import ctime,sleep from thread import start_new_thread def loop1(): print "enter loop1:",ctime(); sleep(3); print "leave loop1:",ctime(