51nod 1058 N的阶乘的长度 位数公式

1058 N的阶乘的长度
基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注
输入N求N的阶乘的10进制表示的长度。例如6! = 720,长度为3。
Input
输入N(1 <= N <= 10^6)
Output
输出N的阶乘的长度
Input示例
6
Output示例
3
思路:
位数公式

则有:

循环遍历即可

代码:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 int main() {
 4     ios::sync_with_stdio(false);
 5     int N;
 6     cin>>N;
 7     double digit=0;
 8     for(int i=1;i<=N;++i) {
 9         digit+=log10(i*1.0);
10     }
11     cout<<(int)digit+1<<endl;
12     return 0;
13 }

时间: 2024-10-10 11:27:48

51nod 1058 N的阶乘的长度 位数公式的相关文章

51nod 1058 N的阶乘的长度 (非暴力)

1058 N的阶乘的长度 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 收藏 关注 取消关注 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 分析:(int)log10(100)=2,(int)log10(1000)=3,(int)log10(500)=2.所以不难发现和证明log10(x)+1=x的长度. 那么

1058 N的阶乘的长度(51NOD基础题)

1058 N的阶乘的长度(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 /* n! 的长度 len = (int)log10(n!) + 1 ; -->> len = log10(1) + log10(2) + .... + log1

1058 N的阶乘的长度

1058 N的阶乘的长度 基准时间限制:1 秒 空间限制:131072 KB 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 输入N(1 <= N <= 10^6) Output 输出N的阶乘的长度 Input示例 6 Output示例 3 * n!的长度等于log10(n!) import java.util.*; public class Main { public static void main(String[] args) { // TODO Au

51nod 1130 N的阶乘的长度(斯特林近似)

输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3 3 斯特林公式是一条用来取n阶乘近似值的数学公式.一般来说,当n很大的时候,n阶乘的计算量十分大 所以斯特灵公式十分好用,而且,即使在n很小的

51nod 1130 N的阶乘的长度 V2(斯特林近似)

输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. 收起 输入 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) 输出 共T行,输出对应的阶乘的长度. 输入样例 3 4 5 6 输出样例 2 3 3 斯特林公式:n!≍(2πn)^(1/2)*(n/e)^n. 对他取以10为底的对数即可. 代码: #include <iostream> #incl

【51NOD-0】1058 N的阶乘的长度

[算法]数学 [题解]n!的位数相当于ans=log10(n!)上取整,然后就可以拆出来加了. 可以用log10(i)或log(i)/log(10) 阶乘好像有个斯特林公式-- #include<cstdio> #include<cmath> using namespace std; int main() { int n; scanf("%d",&n); long double ans=0; for(int i=1;i<=n;i++)ans+=lo

1130 N的阶乘的长度 V2(斯特林近似)

1130 N的阶乘的长度 V2(斯特林近似)(51NOD基础题) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题 输入N求N的阶乘的10进制表示的长度.例如6! = 720,长度为3. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 1000) 第2 - T + 1行:每行1个数N.(1 <= N <= 10^9) Output 共T行,输出对应的阶乘的长度. Input示例 3 4 5 6 Output示例 2 3

[2016-05-09][51nod][1008 N的阶乘 mod P]

时间:2016-05-09 21:21:54 星期一 题目编号:[2016-05-09][51nod][1008 N的阶乘 mod P] 题目大意:输入N和P(P为质数),求N! Mod P = ? (Mod 就是求模 %) 分析:直接算- #include<stdio.h> using namespace std; typedef long long ll; int main(){ ll n,p,ans = 1; scanf("%lld%lld",&n,&

求N!的长度【数学】 51nod 1058

n!的长度等于log10(n!) 1 2 3 4 5 6 7 8 9 10 11 #include <bits/stdc++.h> using namespace std; int main() {     int n;     cin >> n;     double ans = 1;     for(int i = 1; i <= n; i++) {         ans += log10(i);     }     cout << (int)ans <