hdu 1575 Tr A(矩阵快速幂入门)

Tr A

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)

Total Submission(s): 2977    Accepted Submission(s): 2217

Problem Description

A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要求Tr(A^k)%9973。

Input

数据的第一行是一个T,表示有T组数据。

每组数据的第一行有n(2 <= n <= 10)和k(2 <= k < 10^9)两个数据。接下来有n行,每行有n个数据,每个数据的范围是[0,9],表示方阵A的内容。

Output

对应每组数据,输出Tr(A^k)%9973。

Sample Input

2
2 2
1 0
0 1
3 99999999
1 2 3
4 5 6
7 8 9

Sample Output

2
2686

裸的矩阵快速幂,然后取对角线的值就行了。

代码:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
int n;
const int mod=9973;
struct matrix
{
    int ma[13][13];
}a;
matrix multi(matrix x,matrix y)//矩阵相乘
{
    matrix ans;
    memset(ans.ma,0,sizeof(ans.ma));
    for(int i=1;i<=n;i++)
    {
        for(int j=1;j<=n;j++)
        {
            if(x.ma[i][j])//稀疏矩阵优化
            for(int k=1;k<=n;k++)
            {
                ans.ma[i][k]=(ans.ma[i][k]+x.ma[i][j]*y.ma[j][k])%mod;
            }
        }
    }
    return ans;
}
matrix pow(matrix a,int m)
{
       matrix ans;
        for(int i=1;i<=n;i++)//单位矩阵
        {
            for(int j=1;j<=n;j++)
            {
                if(i==j)
                ans.ma[i][j]=1;
                else
                ans.ma[i][j]=0;
            }
        }
        while(m)//矩阵快速幂
        {
            if(m&1)
            {
                ans=multi(ans,a);
            }
            a=multi(a,a);
            m=(m>>1);
        }
      return ans;
}

int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        int m;
        scanf("%d%d",&n,&m);
        matrix a;
        for(int i=1;i<=n;i++)
        {
            for(int j=1;j<=n;j++)
            {
                scanf("%d",&a.ma[i][j]);
            }
        }
        a=pow(a,m);
        int ans=0;
        for(int i=1;i<=n;i++)//取对角线上的元素
         ans=(ans+a.ma[i][i])%mod;
         printf("%d\n",ans);

    }
    return 0;
}
时间: 2024-12-29 07:04:32

hdu 1575 Tr A(矩阵快速幂入门)的相关文章

HDU 1575 Tr A(矩阵高速幂)

题目地址:HDU 1575 矩阵高速幂裸题. 初学矩阵高速幂.曾经学过高速幂.今天一看矩阵高速幂,原来其原理是一样的,这就好办多了.都是利用二分的思想不断的乘.仅仅只是把数字变成了矩阵而已. 代码例如以下: #include <iostream> #include <cstdio> #include <string> #include <cstring> #include <stdlib.h> #include <math.h> #i

hdu 1575 try a 矩阵快速幂

#include<cstring> #include<cstdlib> #include<cstdio> #include<cmath> #include<queue> #include<stack> #include<algorithm> #include<iostream> using namespace std; #define ll long long int const int m=9973; ll

hdu 2604 Queuing(矩阵快速幂乘法)

Problem Description Queues and Priority Queues are data structures which are known to most computer scientists. The Queue occurs often in our daily life. There are many people lined up at the lunch time. Now we define that ‘f’ is short for female and

HDU 2604 Queuing (矩阵快速幂)

HDU 2604 Queuing (矩阵快速幂) ACM 题目地址:HDU 2604 Queuing 题意: n个人排队,f表示女,m表示男,包含子串'fmf'和'fff'的序列为O队列,否则为E队列,有多少个序列为E队列. 分析: 矩阵快速幂入门题. 下面引用巨巨解释: 用f(n)表示n个人满足条件的结果,那么如果最后一个人是m的话,那么前n-1个满足条件即可,就是f(n-1): 如果最后一个是f那么这个还无法推出结果,那么往前再考虑一位:那么后三位可能是:mmf, fmf, mff, fff

HDU 2254 奥运(矩阵快速幂+二分等比序列求和)

HDU 2254 奥运(矩阵快速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 根据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k天后就算矩阵的k次方. 这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和. 所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com> * B

HDU 2604 Queuing,矩阵快速幂

题目地址:HDU 2604 Queuing 题意: 略 分析: 易推出:   f(n)=f(n-1)+f(n-3)+f(n-4) 构造一个矩阵: 然后直接上板子: /* f[i] = f[i-1] + f[i-3] + f[i-4] */ #include<cstdio> #include<cstring> using namespace std; const int N = 4; int L, M; struct mtx { int x[N+1][N+1]; mtx(){ mem

hdu 2243 AC自动机 + 矩阵快速幂

// hdu 2243 AC自动机 + 矩阵快速幂 // // 题目大意: // // 给你一些短串,问在长度不超过k的任意串,包含至少一个这些短串的其中 // 一个.问这样的串有多少个. // // 解题思路: // // 首先, 包含和不包含是一种互斥关系,包含+不包含 = 全集u.全集的答案就是 // 26 ^ 1 + 26 ^ 2 + .... + 26 ^ k.不包含的比较好求.构建一个自动机,得到 // 一个转移矩阵A.表示状态i能到状态j的方法数.而这些状态中都是不包含所给的 //

HDU 1575 Tr A 【矩阵经典2 矩阵快速幂入门】

任意门:http://acm.hdu.edu.cn/showproblem.php?pid=1575 Tr A Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submission(s): 7572    Accepted Submission(s): 5539 Problem Description A为一个方阵,则Tr A表示A的迹(就是主对角线上各项的和),现要

HDU 5950 Recursive sequence 矩阵快速幂

http://acm.hdu.edu.cn/showproblem.php?pid=5950 一开始以为i^4不能矩阵快速幂,但是结论是可以得,那么要怎么递推呢? 矩阵快速幂的思路都是一样的,matrix_a * matrix_b ^ n 其中,想要维护什么,就在matrix_a写,比如现在是F[n - 1], F[n - 2],我想要递推到下一项,那么就 会变成F[n], F[n - 1],这个时候,你就要寻找一下F[n]和F[n - 1]有什么关系. i^4也一样,想要从i^4 递推到 (i