索引深入浅出:非聚集索引的B树结构在聚集表

一个表只能有一个聚集索引,数据行以此聚集索引的顺序进行存储,一个表却能有多个非聚集索引。我们已经讨论了聚集索引的结构,这篇我们会看下非聚集索引结构。

非聚集索引的逻辑呈现

简单来说,非聚集索引是表的子集。当我们定义了一个非聚集索引时,SQL Server把整套非聚集索引键存在不同的页里。我们来看下一个包含BusinessEntityID(PK),PersonType,FirstName,LastName这4列的表,这个表上有一个非聚集索引定义。主体表按BusinessEntityID列(聚集索引键)的顺序存储。非聚集索引的存储是与主体表分离的。如果你仔细看非聚集索引表,你会发现,记录是按Firstname,lastname 列的顺序排列的。简单理解下,非聚集索引就是主体表的子集。

假设现在我们要找出first name值为Michael的记录。如果你从实体表找的话,我们需要从头到脚把每条记录匹配一次,因为记录并没有按first name列排序保存。如果这个表记录有上千条记录的话,这将是一个非常无聊且费时的工作。如果我们在非聚集索引表里找将会容易很多,因为这个表是按first name列以字母顺序排列的。我们很容易定位到first name是Michael的记录。我们并不需要再往下找,因为我们确定没有更多的first name是Michael的记录了。

现在我们得到了Firstname,lastname的值。那我们如何拿到其它2列的值?让我们对非聚集索引做一些改动,将BusinessEntityID列也作为非聚集索引。

现在,一旦我们定位到记录,我们可以使用BusinessEntityID(聚集索引键)列返回主体表,得到其他列的值,这个操作被称为书签查找(bookmark lookups)或RID查找。

聚集索引与非聚集索引

非聚集索引和聚集索引有一样的B树结构。非聚集索引键不会对主体表的数据排序做任何改变,因为聚集索引强制SQL Server将数据以聚集索引键的顺序存储。聚集索引的叶子层由包含表具体数据的数据页组成,而非聚集索引的叶子层由索引页组成。

非聚集索引可以定义在堆表聚集表。在非聚集索引的叶子层,每个索引行包含非聚集索引键值和行定位器。这个定位器指向聚集索引或堆表的数据行。在非聚集索引行里的行定位器要么指向行,要么指向行聚集索引键。如果是堆表,它没有聚集索引,行定位器是个指向行的指针。这个指针由页里行的(文件号:页号:槽号,file identifier :page number :slot number)组成。整个指针被称为ROW ID(RID)。如果表有聚集索引,行定位器是行的聚集索引键。

非聚集索引深入浅出

我们用文章“索引深入浅出:聚集索引的B树结构”用到的salesorderdetails创建一个非聚集索引,这个表在salesorderdetailid列有一个聚集索引。

1 CREATE UNIQUE INDEX Ix_ProductId ON SalesOrderDetail(ProductId,Salesorderid) 

收集非聚集索引相关信息:

 1 TRUNCATE TABLE dbo.sp_table_pages
 2 INSERT INTO sp_table_pages EXEC(‘DBCC IND(IndexDB,SalesOrderDetail,2)‘)
 3 GO
 4
 5 SELECT * FROM dbo.sp_table_pages ORDER BY IndexLevel DESC --根节点/索引页
 6 DBCC TRACEON(3604)
 7 DBCC PAGE(IndexDB,1,3472,3)
 8
 9 DBCC TRACEON(3604)
10 DBCC PAGE(IndexDB,1,3416,3)--叶子节点/索引页
11
12 DBCC TRACEON(3604)
13 DBCC PAGE(IndexDB,1,3557,3)--叶子节点/索引页
14 SELECT * FROM dbo.sp_table_pages WHERE IndexLevel=0 --叶子节点/索引页

根据上述信息进行非聚集索引逻辑示意图的绘制:

现在我们来分析下SQL Server如何存储非聚集索引,首先我们通过DBCC IND命令查看非聚集索引的页分配情况,最后一个参数,2是Ix_ProductId的索引号。

1 DBCC IND(IndexDB,SalesOrderDetail,2)

我们看到输出结果一共有229条记录,包含1个IAM页和229个索引页。我们可以通过找IndexLevel 列值最大的记录,来找根页(root page)。记住索引层级是从叶子层向根层增长的。

1 SELECT * FROM dbo.sp_table_pages ORDER BY IndexLevel DESC --根节点/索引页

在这个表里,我们根层(root leve)页号是3472,index level是1,这就是说,这个非聚集索引的B树结构只有根层(root level)和叶子层(leaf level),没有中间层(intermediate level)。我们来看看3472页。

1 DBCC TRACEON(3604)
2 DBCC PAGE(IndexDB,1,3472,3)

返回结果一共有227条记录(227个叶子层的索引页)。部分结果如上所示。这和聚集索引里的根层(root)/中间层(intermediate)的页结构是一样的。productid与salesorderid组合的值小于或等于(707,51151)的所有记录,可以在子页3416里找到。productid与salesorderid组合的值在(707,51151)与(707,55920)之间的所有记录,可以在子页3417里找到,并以此类推。

我们来看看3417页。

1 DBCC TRACEON(3604)
2 DBCC PAGE(IndexDB,1,3417,3)

一共返回539条记录,都是product id为707的记录。这里的索引只用2层,这个是B树结构的叶子层。你会注意到,这里没有子页ID列,但我们有salesorderdetailid列(聚集索引键),SQL Server用它来进行键或书签查找操作。

我们来看看,SQL Server如何使用这个索引进行一个SELECT操作。点击工具栏的显示包含实际的执行计划。

1 SET STATISTICS IO ON
2 GO
3 SELECT *  FROM SalesOrderDetail WHERE productid=707 AND SalesOrderid=51192 

可以看到执行计划的键查找操作。因为这里where条件刚好完全符合我们非聚集索引定义,SQL Server用这个索引来执行查询。首先SQL Server读取B树结构的根页。我们的查询条件组合(707,51192)落在根页的第二条记录上,因此SQL Server走到它的子页(页号3417)。在这个页里,我们可以用条件组合(707,51192)定位到具体的记录上,它的salesorderdetailid值是37793。从这里开始,SQL Server使用salesorderdetailid值进行键查找(key look up)操作。从上一个文章知道,但我们进行任何聚集索引键查找是,需要执行3个I/O。 因此这里,SQL Server需要执行5个I/O操作(2个在非聚集索引,3个在聚集索引的书签/键查找(bookmark/key lookup),这个和你的结果输出一致。

为了更好的理解它,我们可以把非聚集索引当作salesorderdetail 表的一个子表(我们把它叫做Saleorderdetail_NC),有productid,salesorderid 和 SalesorderDetailid列,并且 ProductId与salesorderid列组合为聚集索引。上述查询的结果可以通过以下2个查询来获得。

1 SELECT *  FROM SalesOrderDetail_nc WHERE productid=707 AND SalesOrderid=51192
2 GO
3 SELECT *  FROM SalesOrderDetail WHERE SalesOrderDetailid=37793

我们再来看一个查询:

1 SELECT *  FROM SalesOrderDetail WHERE productid=707

查询返回3083条记录,查询条件与非聚集索引的第一列匹配。但是SQL Server并没用聚集索引来执行这个查询,查询计划如下所示。

这样做的原因是,如果使用非聚集索引,就需要为3083条记录执行书签查找(key lookup)。这会产生9249个I/O操作(3083*3)。因此,SQL Server使用了聚集索引扫描,它只需要1501(对于聚集索引树结构需要的页数)个I/O操作。如果我们做一个小的改动,只要Productid ,SalesOrderDetailid and SalesOrderId列,SQL Server会使用非聚集索引,因为它不需要进行书签查找(bookmark lookup)操作。非聚集索引的叶子层已经包含这些列了。

1 SELECT productid,salesorderdetailid,salesorderid  FROM SalesOrderDetail WHERE productid=707

这篇文章真的有点长,而且我是该死的BING输入法出错,导致浏览器崩溃,丢失一个晚上3个小时成果,重新写好的,希望大家看了之后可以透彻理解非聚集索引了,晚安各位!!2015-05-14 00:18:42

时间: 2024-10-10 09:44:13

索引深入浅出:非聚集索引的B树结构在聚集表的相关文章

聚焦索引和非聚焦索引的区别

sqlserver中聚集索引的作用是什么? 数据库 专业回答  团队  tustnhs 2011-08-13 15:43 聚集索引和非聚集索引的区别:汉语字典的正文本身就是一个聚集索引.比如,我们要查“安”字,就会很自然地翻开字典的前几页,因为“安”的拼音是“an”,而按照拼音排序汉字的字典是以英文字母“a”开头并以“z”结尾的,那么“安”字就自然地排在字典的前部.如果您翻完了所有以“a”开头的部分仍然找不到这个字,那么就说明您的字典中没有这个字:同样的,如果查“张”字,那您也会将您的字典翻到最

聚集索引与非聚集索引

转自:聚集索引和非聚集索引(整理) 官方说法: 聚集索引 一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序. 聚集索引确定表中数据的物理顺序.聚集索引类似于电话簿,后者按姓氏排列数据.由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引.但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样. 聚集索引对于那些经常要搜索范围值的列特别有效.使用聚集索引找到包含第一个值的行后,便可以确保包含后续索引值的行在物理相邻.例如,如果应用程序执行 的一个查询经

聚集索引和非聚集索引

聚集索引 一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序.  聚集索引确定表中数据的物理顺序.聚集索引类似于电话簿,后者按姓氏排列数据.由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引.但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样.    聚集索引对于那些经常要搜索范围值的列特别有效.使用聚集索引找到包含第一个值的行后,便可以确保包含后续索引值的行在物理相邻.例如,如果应用程序执行 的一个查询经常检索某一日期范围内的记录,则使用聚集索

聚集索引和非聚集索引(整理)

From : http://www.cnblogs.com/aspnethot/articles/1504082.html 官方说法: 聚集索引 一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序.  聚集索引确定表中数据的物理顺序.聚集索引类似于电话簿,后者按姓氏排列数据.由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引.但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样.    聚集索引对于那些经常要搜索范围值的列特别有效.使用聚集索引找到

SqlServer 创建聚集索引与非聚集索引处理千万条数据的优化,以及之间的区别

在以下的文章中,我将以"办公自动化"系统为例,探讨如何在有着1000万条数据的MS SQL SERVER数据库中实现快速的数据提取和数据分页.以下代码说明了我们实例中数据库的"红头文件"一表的部分数据结构: CREATE TABLE [dbo].[TGongwen] ( --TGongwen是红头文件表名 [Gid] [int] IDENTITY (1, 1) NOT NULL , --本表的id号,也是主键 [title] [varchar] (80) COLLA

聚集索引和非聚集索引(整理)(转)

聚集索引 一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序.  聚集索引确定表中数据的物理顺序.聚集索引类似于电话簿,后者按姓氏排列数据.由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引.但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样.    聚集索引对于那些经常要搜索范围值的列特别有效.使用聚集索引找到包含第一个值的行后,便可以确保包含后续索引值的行在物理相邻.例如,如果应用程序执行 的一个查询经常检索某一日期范围内的记录,则使用聚集索

聚集索引和非聚集索引(转)

原文:http://www.cnblogs.com/aspnethot/articles/1504082.html 索引 官方说法: 聚集索引 一种索引,该索引中键值的逻辑顺序决定了表中相应行的物理顺序.  聚集索引确定表中数据的物理顺序.聚集索引类似于电话簿,后者按姓氏排列数据.由于聚集索引规定数据在表中的物理存储顺序,因此一个表只能包含一个聚集索引.但该索引可以包含多个列(组合索引),就像电话簿按姓氏和名字进行组织一样.    聚集索引对于那些经常要搜索范围值的列特别有效.使用聚集索引找到包

SQL Server的聚集索引和非聚集索引

微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引.簇集索引)和非聚集索引(nonclustered index,也称非聚类索引.非簇集索引)--  (一)深入浅出理解索引结构 实际上,您可以把索引理解为一种特殊的目录.微软的SQL SERVER提供了两种索引:聚集索引(clustered index,也称聚类索引.簇集索引)和非聚集索引(nonclustered index,也称非聚类索引.非簇集索引).下面,我们举例来说明一下聚集索引和非聚集索引

SQL存储原理及聚集索引、非聚集索引、唯一索引、主键约束的关系(补)

索引类型 1.          唯一索引:唯一索引不允许两行具有相同的索引值 2.          主键索引:为表定义一个主键将自动创建主键索引,主键索引是唯一索引的特殊类型.主键索引要求主键中的每个值是唯一的,并且不能为空 3.          聚集索引(Clustered):表中各行的物理顺序与键值的逻辑(索引)顺序相同,每个表只能有一个 4.          非聚集索引(Non-clustered):非聚集索引指定表的逻辑顺序.数据存储在一个位置,索引存储在另一个位置,索引中包含指

SQLSERVER聚集索引与非聚集索引的再次研究(下)

原文:SQLSERVER聚集索引与非聚集索引的再次研究(下) SQLSERVER聚集索引与非聚集索引的再次研究(下) 上篇主要说了聚集索引和简单介绍了一下非聚集索引,相信大家一定对聚集索引和非聚集索引开始有一点了解了. 这篇文章只是作为参考,里面的观点不一定正确 上篇的地址:SQLSERVER聚集索引与非聚集索引的再次研究(上) 下篇主要说非聚集索引 先上非聚集索引的结构图 先创建Department8表 1 --非聚集索引 2 USE [pratice] 3 GO 4 5 CREATE TAB