[51nod1009]数字1的数量

解题关键:数位dp,对每一位进行考虑,通过过程得出每一位上1出现的次数

1位数的情况:

在解法二中已经分析过,大于等于1的时候,有1个,小于1就没有。

2位数的情况:

N=13,个位数出现的1的次数为2,分别为1和11,十位数出现1的次数为4,分别为10,11,12,13,所以f(N) = 2+4。

N=23,个位数出现的1的次数为3,分别为1,11,21,十位数出现1的次数为10,分别为10~19,f(N)=3+10。

由此我们发现,个位数出现1的次数不仅和个位数有关,和十位数也有关,如果个位数大于等于1,则个位数出现1的次数为十位数的数字加1;如果个位数为0,个位数出现1的次数等于十位数数字。而十位数上出现1的次数也不仅和十位数相关,也和个位数相关:如果十位数字等于1,则十位数上出现1的次数为个位数的数字加1,假如十位数大于1,则十位数上出现1的次数为10。

3位数的情况:

N=123

个位出现1的个数为13:1,11,21,…,91,101,111,121

十位出现1的个数为20:10~19,110~119

百位出现1的个数为24:100~123

我们可以继续分析4位数,5位数,推导出下面一般情况:

假设N,我们要计算百位上出现1的次数,将由三部分决定:百位上的数字,百位以上的数字,百位一下的数字。

如果百位上的数字为0,则百位上出现1的次数仅由更高位决定,比如12013,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,共1200个。等于更高位数字乘以当前位数,即12 * 100。

如果百位上的数字大于1,则百位上出现1的次数仅由更高位决定,比如12213,百位出现1的情况为100~199,1100~1199,2100~2199,…,11100~11199,12100~12199共1300个。等于更高位数字加1乘以当前位数,即(12 + 1)*100。

        如果百位上的数字为1,则百位上出现1的次数不仅受更高位影响,还受低位影响。例如12113,受高位影响出现1的情况:100~199,1100~1199,2100~2199,…,11100~11199,共1200个,但它还受低位影响,出现1的情况是12100~12113,共114个,等于低位数字113+1。

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 typedef long long ll;
 4 int solve(int n){
 5     int cnt=0,i=1,be,af,cur;
 6     while(n/i){
 7         be=n/(i*10);
 8         af=n-n/i*i;
 9         cur=n/i%10;
10
11         if(cur>1) cnt+=(be+1)*i;
12         else if(cur<1) cnt+=be*i;
13         else cnt+=be*i+1+af;
14         i*=10;
15     }
16     return cnt;
17 }
18 int main(){
19     int n;
20     cin>>n;
21     int ans=solve(n);
22     cout<<ans<<endl;
23     return 0;
24 }
时间: 2024-12-19 07:07:56

[51nod1009]数字1的数量的相关文章

[51 nod]1009 数字1的数量

1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1. Input 输入N(1 <= N <= 10^9) Output 输出包含1的个数 Input示例 12 Output示例 5详解请看大牛博客:http://www.cnblogs.com/jy02414216/ar

数字0-9的数量

数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次. Input 两个数a,b(1 <= a <= b <= 10^18) Output 输出共10行,分别是0-9出现的次数 Input示例 10 19 Output示例 1 11 1 1 1 1 1 1 1 1分析:数位dp做多了发现

NYOJ 648 数字1的数量

数字1的数量 时间限制:1000 ms  |  内存限制:65535 KB 难度:1 描述 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1. 输入 输入N(0 <= N <= 10^9) 多组测试数据 输出 输出包含1的个数 样例输入 12 样例输出 5 同 点击打开链接 AC码: #include<stdio.h> int fun(int n) { if(

51nod 1009 数字1的数量 数位dp

1009 数字1的数量 基准时间限制:1 秒 空间限制:131072 KB 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1. Input 输入N(1 <= N <= 10^9) Output 输出包含1的个数 Input示例 12 Output示例 5 #include<bits/stdc++.h> using namespace std; #define

51nod 1042 数字0-9的数量 (数位dp、dfs、前导0)

1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 收藏 关注 取消关注 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次. Input 两个数a,b(1 <= a <= b <= 10^18) Output 输出共10行,分别是0-9出现的次数 Input示例 10 19 Output示例

51nod- 【1042 数字0-9的数量 】

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1042 题目: 1042 数字0-9的数量 基准时间限制:1 秒 空间限制:131072 KB 分值: 10 难度:2级算法题 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次. Input 两个数a,b(1 <= a <

1042 数字0-9的数量(非数位dp解法)

1042 数字0-9的数量 给出一段区间a-b,统计这个区间内0-9出现的次数. 比如 10-19,1出现11次(10,11,12,13,14,15,16,17,18,19,其中11包括2个1),其余数字各出现1次. 输入 两个数a,b(1 <= a <= b <= 10^18) 输出 输出共10行,分别是0-9出现的次数 输入样例 10 19 输出样例 1 11 1 1 1 1 1 1 1 1 题意很明确,其实只要能求的到b的就可以.然后用val(b) - val(a-1)就能得出结果

CodeVS 1359 数字计数 51nod 1042 数字0-9的数量 Pascal

题目大意: 我的代码又臭又长,但是毕竟是我这个jr想了几天才推出的公式,看别的大神都写数位DP,所以我决定分享一下我的思路.我认为我的思路一向是最好理解的! 要分两种情况讨论: 1.0的情况.我们首先推出0~9中只有1个0,在0~99中有(1+(9*100*1))个0{第一位可以为1~9,第二位可以为0~9,0只可以放在后者,所以乘1},在0~999中有((1+(9*100*1))+(9*101*2))个0~6666为例,先算出0~999中0的个数,在算出1000~5999中0的个数,则为(10

51 Nod 1009 数字1的数量(数位dp)

题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1009 题目: 给定一个十进制正整数N,写下从1开始,到N的所有正数,计算出其中出现所有1的个数. 例如:n = 12,包含了5个1.1,10,12共包含3个1,11包含2个1,总共5个1. Input 输入N(1 <= N <= 10^9) Output 输出包含1的个数 Input示例 12 Output示例 5题意:中文题诶题解:我们计算每个数位上1出