“大数据讲师”、“Hadoop讲师”、“Spark讲师”、“云计算讲师”、“Android讲师”

王家林简介

Spark亚太研究院院长和首席专家,中国目前唯一的移动互联网和云计算大数据集大成者。

在Spark、Hadoop、Android等方面有丰富的源码、实务和性能优化经验。彻底研究了Spark从0.5.0到0.9.1共13个版本的Spark源码,并已完成2014年5月31日发布的Spark1.0源码研究。

Hadoop源码级专家,曾负责某知名公司的类Hadoop框架开发工作,专注于Hadoop一站式解决方案的提供,同时也是云计算分布式大数据处理的最早实践者之一;

Android架构师、高级工程师、咨询顾问、培训专家;

通晓Spark、Hadoop、Android、HTML5,迷恋英语播音和健美;

致力于Spark、Hadoop、Android、HTML5的软、硬、云整合的一站式解决方案;

超过10本的IT畅销书作者;

Hadoop、Android、Html5等课程详情:

http://edu.51cto.com/course/course_id-1659.html

http://www.cnblogs.com/guoshiandroid/archive/2013/06/06/3122798.html

“大数据讲师”、“Hadoop讲师”、“Spark讲师”、“云计算讲师”、“Android讲师”,布布扣,bubuko.com

时间: 2024-10-19 10:45:09

“大数据讲师”、“Hadoop讲师”、“Spark讲师”、“云计算讲师”、“Android讲师”的相关文章

2分钟读懂大数据框架Hadoop和Spark的异同

谈到大数据,相信大家对Hadoop和Apache Spark这两个名字并不陌生.但我们往往对它们的理解只是提留在字面上,并没有对它们进行深入的思考,下面不妨跟我一块看下它们究竟有什么异同. 解决问题的层面不一样 首先,Hadoop和Apache Spark两者都是大数据框架,但是各自存在的目的不尽相同.Hadoop实质上更多是一个分布式数据基础设施: 它将巨大的数据集分派到一个由普通计算机组成的集群中的多个节点进行存储,意味着您不需要购买和维护昂贵的服务器硬件. 同时,Hadoop还会索引和跟踪

大数据云计算高级实战Hadoop,Flink,Spark,Kafka,Storm,Docker高级技术大数据和Hadoop技能

大数据和Hadoop技能可能意味着有你的梦想事业和被遗忘之间的差异.骰子引用:“技术专业人员应该志愿参与大数据项目,这使他们对目前的雇主更有价值,对其他雇主更有销路.” 1.与Hadoop的职业:根据福布斯2015年的一份报告,约有90%的全球性组织报告了中高级别的大数据分析投资,约三分之一的投资者称其投资“非常重要”.最重要的是,约三分之二的受访者表示,数据和分析计划对收入产生了重大的可衡量的影响. Hadoop技能是需求的 - 这是不可否认的事实!因此,IT专业人士迫切需要使用 Hadoop

大数据和Hadoop什么关系?为什么大数据要学习Hadoop?

大数据是一系列技术的统称,经过多年的发展,大数据已经形成了从数据采集.整理.传输.存储.安全.分析.呈现和应用等一系列环节,这些环节涉及到诸多大数据工作岗位,这些工作岗位与物联网.云计算也都有密切的联系. Hadoop是一个由Apache基金会所开发的分布式系统基础架构,是用Java语言开发的一个开源分布式计算平台,适合大数据的分布式存储和计算平台. 广义上讲,大数据是时代发展和技术进步的产物.Hadoop只是一种处理大数据的技术手段. Hadoop是目前被广泛使用的大数据平台,本身就是大数据平

走在大数据的边缘 基于Spark的机器学习-智能客户系统项目实战(项目实战)

38套大数据,云计算,架构,数据分析师,Hadoop,Spark,Storm,Kafka,人工智能,机器学习,深度学习,项目实战视频教程 视频课程包含: 38套大数据和人工智能精品高级课包含:大数据,云计算,架构,数据挖掘实战,实时推荐系统实战,电视收视率项目实战,实时流统计项目实战,离线电商分析项目实战,Spark大型项目实战用户分析,智能客户系统项目实战,Linux基础,Hadoop,Spark,Storm,Docker,Mapreduce,Kafka,Flume,OpenStack,Hiv

大数据为什么要选择Spark

大数据为什么要选择Spark Spark是一个基于内存计算的开源集群计算系统,目的是更快速的进行数据分析. Spark由加州伯克利大学AMP实验室Matei为主的小团队使用Scala开发开发,其核心部分的代码只有63个Scala文件,非常轻量级. Spark 提供了与 Hadoop 相似的开源集群计算环境,但基于内存和迭代优化的设计,Spark 在某些工作负载表现更优秀. 在2014上半年,Spark开源生态系统得到了大幅增长,已成为大数据领域最活跃的开源项目之一,当下已活跃在Hortonwor

洞悉大数据:Hadoop和云分析七大误解

七大误解:大数据与hadoop 对于Hadoop技术而言,可以说是开源领域的传奇,然而如今业界还伴随着一些流言,这些流言可能会导致IT高管们带着“有色”的观点去制定策略. 从IDC分析师报告中2013年数据存储上的增长速度将达到53.4%,AT&T更是声称无线数据的流量在过去的5年内增长200倍,从互联网内容.电子邮件.应用通知.社交消息以及每天接收的消息都在显着的增长,这也是众多大企业都聚焦大数据的原因所在. 毫无疑问,Hadoop成为解决大数据需求的主要投资领域之一,而类似Facebook等

大数据:Hadoop入门

大数据:Hadoop入门 一:什么是大数据 什么是大数据: (1.)大数据是指在一定时间内无法用常规软件对其内容进行抓取,管理和处理的数据集合,简而言之就是数据量非常大,大到无法用常规工具进行处理,如关系型数据库,数据仓库等.这里“大”是一个什么量级呢?如在阿里巴巴每天处理数据达到20PB(即20971520GB). 2.大数据的特点: (1.)体量巨大.按目前的发展趋势来看,大数据的体量已经到达PB级甚至EB级. (2.)大数据的数据类型多样,以非结构化数据为主,如网络杂志,音频,视屏,图片,

大数据测试之hadoop命令大全

大数据测试之hadoop命令大全 1.列出所有Hadoop Shell支持的命令  $ bin/hadoop fs -help2.显示关于某个命令的详细信息  $ bin/hadoop fs -help command-name3.用户可使用以下命令在指定路径下查看历史日志汇总  $ bin/hadoop job -history output-dir这条命令会显示作业的细节信息,失败和终止的任务细节.4.关于作业的更多细节,比如成功的任务,以及对每个任务的所做的尝试次数等可以用下面的命令查看 

细细品味大数据--初识hadoop

初识hadoop 前言 之前在学校的时候一直就想学习大数据方面的技术,包括hadoop和机器学习啊什么的,但是归根结底就是因为自己太懒了,导致没有坚持多长时间,加上一直为offer做准备,所以当时重心放在C++上面了(虽然C++也没怎么学),计划在大四下有空余时间再来慢慢学习.现在实习了,需要这方面的知识,这对于我来说,除去校招时候投递C++职位有少许影响之外,无疑是有很多的好处. 所以,接下来的很长日子,我学习C++之外的很多时间都必须要花在大数据上面了. 那么首先呢,先来认识一下这处理大数据

大数据之hadoop,国内首部:Zookeeper从入门到精通课程分享

对这个课程感兴趣的朋友可以加我QQ2059055336和我联系. ZooKeeper是Hadoop的开源子项目(Google Chubby的开源实现),它是一个针对大型分布式系统的可靠协调系统,提供的功能包括:配置维护.命名服务.分布式同步.组服务等. Zookeeper的Fast Fail 和 Leader选举特性大大增强了分布式集群的稳定和健壮性,并且解决了Master/Slave模式的单点故障重大隐患,这是越来越多的分布式产品如HBase.Storm(流计算).S4(流计算)等强依赖Zoo