取模软件的使用

设置的格式如下:

然后,通过C2mif转化成mif文件。

程序的实现上,通过该点所对应的点是否为高电平,来设置背景色和前景色,实现显示。

时间: 2024-10-07 00:28:55

取模软件的使用的相关文章

信息安全-3:负数取模[转]

背景 最近在一道 Java 习题中,看到这样的一道题: What is the output when this statement executed:System.out.printf(-7 % 3); 正整数的取余运算大家都很熟悉,但是对于负数.实数的取余运算,确实给人很新鲜的感觉.于是我对此进行了一些探索.我发现,这里面还是颇有一点可以探索的东西的. 探究 首先,看看自然数的取模运算(定义1): 如果a和d是两个自然数,d非零,可以证明存在两个唯一的整数 q 和 r,满足 a = qd +

CodeForces Gym 100935D Enormous Carpet 快速幂取模

Enormous Carpet Time Limit:2000MS     Memory Limit:65536KB     64bit IO Format:%I64d & %I64u Gym 100935D Description standard input/outputStatements Ameer is an upcoming and pretty talented problem solver who loves to solve problems using computers.

快速幂取模(POJ 1995)

http://poj.org/problem?id=1995 以这道题来分析一下快速幂取模 a^b%c(这就是著名的RSA公钥的加密方法),当a,b很大时,直接求解这个问题不太可能 利用公式a*b%c=((a%c)*b)%c 每一步都进行这种处理,这就解决了a^b可能太大存不下的问题,但这个算法的时间复杂度依然没有得到优化 由此可以用快速幂算法优化: http://www.cnblogs.com/qlky/p/5020402.html 再结合取模公式: (a + b) % p = (a % p

快速幂及快速幂取模

快速幂顾名思义,就是快速算某个数的多少次幂.其时间复杂度为 O(log?N), 与朴素的O(N)相比效率有了极大的提高.——bybaidu 快速幂可以用位运算这个强大的工具实现. 代码: 1 int pow(int a,int b) 2 { 3 int ans=1; 4 while(b!=0) 5 { 6 if(b&1) 7 ans*=a; 8 a*=a; 9 b>>=1; 10 } 11 return ans; 12 } 快速幂取模需要记住一个定理:积的取模等于取模积的取模:算法是蒙

关于快速幂取模

今天看算法书的时候,看到一道关于快速幂取模的题,心想好像不难,便写了一下,发现我的渣渣代码写的比正常的O(N)复杂度还要慢(天知道我怎么做到的T_T),渣渣代码如下: 1 public static long fastMi(long x,long n){ 2 if(n==1){ 3 return x; 4 } 5 if(n%2==0){ 6 return fastMi(x,n/2)*fastMi(x,n/2); 7 }else{ 8 return fastMi(x,n/2)*fastMi(x,n

连续取模

哈理工团体赛:problem E . Mod Kim刚刚学会C语言中的取模运算(mod).他想要研究一下一个数字A模上一系列数后的结果是多少.帮他写个程序验证一下. Input 第一行一个整数T代表数据组数. 接下来T组数据,第一行一个整数n,接下来n个数字ai 接下来一行一个整数m,接下来m个数字bi Output 对于每个bi,输出bi%a1%a2%...%an Sample Input Output 1 4 10 9 5 7 5 14 8 27 11 25 4 3 2 1 0 Hint 在

组合数取模(转载)

本文转自:http://blog.csdn.net/skywalkert/article/details/52553048 0. 写在前面 在程序设计中,可能会碰到多种类型的计数问题,其中不少涉及到组合数的计算,所以笔者写下这么一篇文章,期望能解决一些常规的组合数求模问题.以下部分内容改编自AekdyCoin的<组合数求模>,而且为了感谢他对(懵懂的)笔者的启发,这篇文章的标题与其文章相同.另外,感谢Picks将多项式运算的技巧在中国进行推广,感谢51nod提供了许多有趣的数论题目,感谢fot

codevs1281 矩阵乘法 快速幂 !!!手写乘法取模!!! 练习struct的构造函数和成员函数

对于这道题目以及我的快速幂以及我的一节半晚自习我表示无力吐槽,, 首先矩阵乘法和快速幂没必要太多说吧,,嗯没必要,,我相信没必要,,实在做不出来写两个矩阵手推一下也就能理解矩阵的顺序了,要格外注意一些细节,比如快速幂时ans矩阵的初始化方式,快速幂的次数,矩阵乘法过程中对临时矩阵的清零,最后输出结果时的初始矩阵...矩阵快速幂好理解但是细节还是有点小坑的.. 下面就是满满的槽点,,高能慎入!!! 对于这个题目要求矩阵过程中对m取模,结果对g取模,我表示难以接受,,上来没看清题直接wa19个点,另

Raising Modulo Numbers_快速幂取模算法

Description People are different. Some secretly read magazines full of interesting girls' pictures, others create an A-bomb in their cellar, others like using Windows, and some like difficult mathematical games. Latest marketing research shows, that