第1章 课程介绍&学习指南
本章会对这门课程进行说明并进行学习方法介绍。
第2章 为什么要学Spark
Spark作为近几年最火爆的大数据处理技术,是成为大数据工程师必备的技能之一。本章节将从如下几个方面对Spark进行一个宏观上的介绍:Spark产生背景、特性、环境部署、Spark与Hadoop的对比、Spark开发语言及运行模式等。
第3章 Spark SQL快速入门
Spark SQL面世已来,深受小伙伴们的喜爱,继续为Spark用户提供高性能SQL on Hadoop解决方案,还为Spark带来了通用、高效、多元一体的结构化数据处理能力。本章将从为什么要学习SQL/Spark SQL、SQL on Hadoop框架、Spark SQL概述、架构及快速入门,这几个角度进行展开讲解...
第4章 Spark SQL API编程
DataFrame&Dataset是Spark2.x中最核心的编程对象,Spark2.x中的子框架能够使用DataFrame或Dataset来进行数据的交互操作。本章将从DataFrame的概述、DataFrame对比RDD、DataFrame API操作等方面对DataFrame做详细的编程开发讲解。
第5章 Data Source API
Spark SQL中的核心功能,可以使用Data Source API非常方便的对存储在不同系统上的不同格式的数据进行操作。本章将讲解如何使用Data Source API来操作text、json、Parquet、JDBC中的数据以及综合使用。
第6章 整合Hive操作及函数
如何使用Spark对接已有数据仓库Hive中的数据,这是在生产中常见的问题。本章将讲解如何使用Spark无缝对接Hive中已有数据进行处理,thriftserver的使用、以及如何使用Spark SQL中的内置函数以及自定义函数。
第7章 Kudu入门
近两年,KUDU在大数据平台的应用越来越广泛,她是Cloudera开源的运行在Hadoop平台上的列式存储系统,能够为我们提供“fast analytics on fast data”。本章将从Kudu的核心概念、架构、部署、API操作以及Spark整合Kudu的使用展开讲解。
第8章 基于Spark SQL和Kudu的广告业务项目实战(一)
本章使用Spark SQL整合Kudu对广告业务项目进行统计分析操作。涉及到的过程有:项目架构、数据清洗、数据统计、结果入库、项目重构。通过本实战项目将Spark SQL和Kudu中的知识点融会贯通,达到举一反三的效果 。
第9章 基于Spark SQL和Kudu的广告业务项目实战(二)
基于上一章节做更复杂维度的统计分析,作业的封装、调度。
第10章 Spark调优策略
Spark应用调优是一个在生产上或者面试中老生常谈的问题,本章节将从资源设置、广播变量、Shuffle、JVM引发的相关角度逐一展开讲解。
第11章 Presto初识
Preso也是当下用的非常多的一种SQL on Hadoop的解决方案。本章节将从Presto架构、API操作等角度出发,通过一个案例来进行综合演练。
第12章 云平台建设的思考
本章将从如何建设大数据云平台的角度,涉及到数据平台的N个方面,是小伙伴以后进入大厂工作奠定基础,同时也会从Spark vs Flink的角度来为小伙伴们分析选型时的疑惑。
下载地址:SparkSQL极速入门 整合Kudu实现广告业务数据分析
原文地址:https://www.cnblogs.com/iyue/p/11832379.html