背景
接触tensorflow时,学习到mnist,发现处理数据的时候采取one-hot编码,想起以前搞FPGA状态机遇到过格雷码与独热码。
解析:
将离散型特征使用one-hot编码,确实会让特征之间的距离计算更加合理。
比如,有一个离散型特征,代表工作类型,该离散型特征,共有三个取值。
不使用one-hot编码,其表示分别是x_1 = (1), x_2 = (2), x_3 = (3)。两个工作之间的距离是,(x_1, x_2) = 1, d(x_2, x_3) = 1, d(x_1, x_3) = 2。
那么x_1和x_3工作之间就越不相似吗?显然这样的表示,计算出来的特征的距离是不合理。
如果使用one-hot编码,则得到x_1 = (1, 0, 0), x_2 = (0, 1, 0), x_3 = (0, 0, 1),那么两个工作之间的距离就都是sqrt(2):即每两个工作之间的距离是一样的,显得更合理。
原文地址:https://www.cnblogs.com/schips/p/12154216.html
时间: 2024-11-03 15:44:44