1、回归 一元线性回归 代价函数 梯度下降法

1、回归是达尔文表弟发现的,就是说人类总体有一个平均身高。那个高个子生的孩子都个高,矮的孩子生的矮。但是他们的下一代大部分都往平均身高长,也就是说特别高的人,他们的孩子会很高,但是往往比他们自己矮。特别矮的人他们生的孩子会矮一些,但是会比自己的父母高,他们都有这种趋势。表弟管这个叫做回归。

2、一元线性回归 指的是一个自变量对应一个因变量的 一元函数。当平面坐标系中 有些散列的点的时候,我们往往想找到一条直线去拟合他们的回归线。我们管这条直线叫做一元线性回归

假定这个函数为我们要求的就是这个函数的的值 确定了这个值 我们就确定了一元线性回归函数

3、代价函数等于

很显然 如果的值能使得最小 那就是我们要的一元线性回归函数。

4、梯度下降法

就是针对代价函数 的两个变量求偏微分,然后这个偏微分的值乘以一个变量 让当前导数的值-变量*学习量。值最小时就是梯度下降法所要的。此时的参数

就是我们一元线性回归方程需要的两个值。关于学习变量 不要把它想得很神秘 拿到坐标系去研究  它只是为了配合求导的斜率 改变当前变量在坐标系上移动的方向和大小的 仅此而已

发散一下  如果不是 - 而是+ 的话就是求峰值 此时代价函数最大 拟合的最不好

另外有一点 为什么不用微积分中两次求导数 的方法求极值

原文地址:https://www.cnblogs.com/wholeworld/p/11874674.html

时间: 2024-09-30 16:56:30

1、回归 一元线性回归 代价函数 梯度下降法的相关文章

Stanford机器学习课程笔记——单变量线性回归和梯度下降法

Stanford机器学习课程笔记--单变量线性回归和梯度下降法 1. 问题引入 单变量线性回归就是我们通常说的线性模型,而且其中只有一个自变量x,一个因变量y的那种最简单直接的模型.模型的数学表达式为y=ax+b那种,形式上比较简单.Stanford的机器学习课程引入这个问题也想让我们亲近一下machine learning这个领域吧~吴恩达大神通过一个房屋交易的问题背景,带领我们理解Linear regression with one variable.如下: 不要看这个问题简答,大神就是大神

线性回归与梯度下降法

前言 最近在看斯坦福的<机器学习>的公开课,这个课程是2009年的,有点老了,不过讲的还是很好的,廓清了一些我以前关于机器学习懵懂的地方.我的一位老师曾经说过: 什么叫理解?理解就是你能把同一个事情用自己的语言表达出来,并且能让别人听得懂. 本着这样的原则,同时也为了证明自己是”理解”的,于是决定打算在学习<机器学习>公开课的时候,写一些系列文章类巩固学到的东西.机器学习中的很多内容都是和数学推导相关的,而我本人的数学功底并不扎实,所以文章也许会写得比较慢.另外,这个系列的文章大体

逻辑回归(logistic-regression)之梯度下降法详解

引言 逻辑回归常用于预测疾病发生的概率,例如因变量是是否恶性肿瘤,自变量是肿瘤的大小.位置.硬度.患者性别.年龄.职业等等(很多文章里举了这个例子,但现代医学发达,可以通过病理检查,即获取标本放到显微镜下观察是否恶变来判断):广告界中也常用于预测点击率或者转化率(cvr/ctr),例如因变量是是否点击,自变量是物料的长.宽.广告的位置.类型.用户的性别.爱好等等. 本章主要介绍逻辑回归算法推导.梯度下降法求最优值的推导及spark的源码实现. 常规方法 一般回归问题的步骤是: 1. 寻找预测函数

线性回归之梯度下降算法

线性回归之梯度下降法 1.梯度的概念 梯度是一个向量,对于一个多元函数\(f\)而言,\(f\)在点\(P(x,y)\)的梯度是\(f\)在点\(P\)处增大最快的方向,即以f在P上的偏导数为分量的向量.以二元函数\(f(x,y)\)为例,向量\(\{\frac{\partial f}{\partial x},\frac{\partial f}{\partial y}\}|_{(x_0,y_0)}=f_x(x_0,y_0)\overrightarrow i+f_y(x_0,y_0)\overri

机器学习笔记02:多元线性回归、梯度下降和Normal equation

在<机器学习笔记01>中已经讲了关于单变量的线性回归以及梯度下降法.今天这篇文章作为之前的扩展,讨论多变量(特征)的线性回归问题.多变量梯度下降.Normal equation(矩阵方程法),以及其中需要注意的问题. 单元线性回归 首先来回顾一下单变量线性回归的假设函数: Size(feet2) Price($1000) 2104 460 1416 232 1534 315 852 178 - - 我们的假设函数为 hθ(x)=θ0+θ1x 多元线性回归 下面介绍多元线性回归(Linear R

梯度下降法解逻辑斯蒂回归

梯度下降法解逻辑斯蒂回归 本文是Andrew Ng在Coursera的机器学习课程的笔记. Logistic回归属于分类模型.回顾线性回归,输出的是连续的实数,而Logistic回归输出的是[0,1]区间的概率值,通过概率值来判断因变量应该是1还是0.因此,虽然名字中带着"回归"(输出范围常为连续实数),但Logistic回归属于分类模型(输出范围为一组离散值构成的集合). 整体步骤 假如我们的自变量是"数学课和英语课的成绩",x={x1,x2},因变量是"

梯度下降法求解多元线性回归

线性回归形如y=w*x+b的形式,变量为连续型(离散为分类).一般求解这样的式子可采用最小二乘法原理,即方差最小化, loss=min(y_pred-y_true)^2.若为一元回归,就可以求w与b的偏导,并令其为0,可求得w与b值:若为多元线性回归, 将用到梯度下降法求解,这里的梯度值w的偏导数,利用目标公式,loss如下: 对其求偏导,公式如下: 其中x表示为(n+1)行m列,有n个属性,m个样本,最后一行值为1给偏差的:y表示m行1列为m个样本的值: w表示(n+1)行1列为n个w对应属性

机器学习入门之单变量线性回归(上)——梯度下降法

在统计学中,线性回归(英语:linear regression)是利用称为线性回归方程的最小二乘函数对一个或多个自变量和因变量之间关系进行建模的一种回归分析.这种函数是一个或多个称为回归系数的模型参数的线性组合.只有一个自变量的情况称为简单回归,大于一个自变量情况的叫做多元回归(multivariate linear regression).——————维基百科 一直以来,这部分内容都是ML的敲门砖,吴恩达教授在他的课程中也以此为第一个例子,同时,本篇也参考了许多吴教授的内容. 在这里,我简单把

梯度下降法求解线性回归

梯度下降法 梯度下降法(英语:Gradient descent)是一个一阶最优化算法,通常也称为最速下降法. 要使用梯度下降法找到一个函数的局部极小值,必须向函数上当前点对应梯度(或者是近似梯度)的反方向的规定步长距离点进行迭代搜索.如果相反地向梯度正方向迭代进行搜索,则会接近函数的局部极大值点:这个过程则被称为梯度上升法. 梯度下降的形象解释 现在有一个山谷,你想要到达山谷的最低端,你此时在A点,那么此时就可以利用梯度下降来找到最低点.你每次以你当前的方向为基准.选择一个最陡峭的方向,朝着山下