ython 的高级特征你知多少?来对比看看

Python 多好用不用多说,大家看看自己用的语言就知道了。但是 Python 隐藏的高级功能你都 get 了吗?本文中,作者列举了 Python 中五种略高级的特征以及它们的使用方法,快来一探究竟吧!
Python 是一种美丽的语言,它简单易用却非常强大。但你真的会用 Python 的所有功能吗?

任何编程语言的高级特征通常都是通过大量的使用经验才发现的。比如你在编写一个复杂的项目,并在 stackoverflow 上寻找某个问题的答案。然后你突然发现了一个非常优雅的解决方案,它使用了你从不知道的 Python 功能!

这种学习方式太有趣了:通过探索,偶然发现什么。

下面是 Python 的 5 种高级特征,以及它们的用法。

Lambda 函数

Lambda 函数是一种比较小的匿名函数——匿名是指它实际上没有函数名。

Python 函数通常使用 def a_function_name() 样式来定义,但对于 lambda 函数,我们根本没为它命名。这是因为 lambda 函数的功能是执行某种简单的表达式或运算,而无需完全定义函数。

lambda 函数可以使用任意数量的参数,但表达式只能有一个。

x = lambda a, b : a * b
print(x(5, 6)) # prints ‘30‘

x = lambda a : a*3 + 3
print(x(3)) # prints ‘12‘

看它多么简单!我们执行了一些简单的数学运算,而无需定义整个函数。这是 Python 的众多特征之一,这些特征使它成为一种干净、简单的编程语言。

Map 函数

Map() 是一种内置的 Python 函数,它可以将函数应用于各种数据结构中的元素,如列表或字典。对于这种运算来说,这是一种非常干净而且可读的执行方式。

‘‘‘
遇到问题没人解答?小编创建了一个Python学习交流QQ群:××× 寻找有志同道合的小伙伴,
互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘‘‘
def square_it_func(a):
    return a * a

x = map(square_it_func, [1, 4, 7])
print(x) # prints ‘[1, 16, 49]‘

def multiplier_func(a, b):
    return a * b

x = map(multiplier_func, [1, 4, 7], [2, 5, 8])

print(x) # prints ‘[2, 20, 56]‘看看上面的示例!我们可以将函数应用于单个或多个列表。实际上,你可以使用任何 Python 函数作为 map 函数的输入,只要它与你正在操作的序列元素是兼容的。

Filter 函数

filter 内置函数与 map 函数非常相似,它也将函数应用于序列结构(列表、元组、字典)。二者的关键区别在于 filter() 将只返回应用函数返回 True 的元素。

详情请看如下示例:

# Our numbers
numbers = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

# Function that filters out all numbers which are odd
def filter_odd_numbers(num):

    if num % 2 == 0:
        return True
    else:
        return False

filtered_numbers = filter(filter_odd_numbers, numbers)

print(filtered_numbers)
# filtered_numbers = [2, 4, 6, 8, 10, 12, 14]

我们不仅评估了每个列表元素的 True 或 False,filter() 函数还确保只返回匹配为 True 的元素。非常便于处理检查表达式和构建返回列表这两步。

Itertools 模块

Python 的 Itertools 模块是处理迭代器的工具集合。迭代器是一种可以在 for 循环语句(包括列表、元组和字典)中使用的数据类型。

使用 Itertools 模块中的函数让你可以执行很多迭代器操作,这些操作通常需要多行函数和复杂的列表理解。关于 Itertools 的神奇之处,请看以下示例:

‘‘‘
遇到问题没人解答?小编创建了一个Python学习交流QQ群:××× 寻找有志同道合的小伙伴,
互帮互助,群里还有不错的视频学习教程和PDF电子书!
‘‘‘
from itertools import *

# Easy joining of two lists into a list of tuples
for i in izip([1, 2, 3], [‘a‘, ‘b‘, ‘c‘]):
    print i
# (‘a‘, 1)
# (‘b‘, 2)
# (‘c‘, 3)

# The count() function returns an interator that
# produces consecutive integers, forever. This
# one is great for adding indices next to your list
# elements for readability and convenience
for i in izip(count(1), [‘Bob‘, ‘Emily‘, ‘Joe‘]):
    print i
# (1, ‘Bob‘)
# (2, ‘Emily‘)
# (3, ‘Joe‘)    

# The dropwhile() function returns an iterator that returns
# all the elements of the input which come after a certain
# condition becomes false for the first time.
def check_for_drop(x):
    print ‘Checking: ‘, x
    return (x > 5)

for i in dropwhile(should_drop, [2, 4, 6, 8, 10, 12]):
    print ‘Result: ‘, i

# Checking: 2
# Checking: 4
# Result: 6
# Result: 8
# Result: 10
# Result: 12

# The groupby() function is great for retrieving bunches
# of iterator elements which are the same or have similar
# properties

a = sorted([1, 2, 1, 3, 2, 1, 2, 3, 4, 5])
for key, value in groupby(a):
    print(key, value), end=‘ ‘)

# (1, [1, 1, 1])
# (2, [2, 2, 2])
# (3, [3, 3])
# (4, [4])
# (5, [5]) 

Generator 函数

Generator 函数是一个类似迭代器的函数,即它也可以用在 for 循环语句中。这大大简化了你的代码,而且相比简单的 for 循环,它节省了很多内存。

比如,我们想把 1 到 1000 的所有数字相加,以下代码块的第一部分向你展示了如何使用 for 循环来进行这一计算。

如果列表很小,比如 1000 行,计算所需的内存还行。但如果列表巨长,比如十亿浮点数,这样做就会出现问题了。使用这种 for 循环,内存中将出现大量列表,但不是每个人都有无限的 RAM 来存储这么多东西的。Python 中的 range() 函数也是这么干的,它在内存中构建列表。

代码中第二部分展示了使用 Python generator 函数对数字列表求和。generator 函数创建元素,并只在必要时将其存储在内存中,即一次一个。这意味着,如果你要创建十亿浮点数,你只能一次一个地把它们存储在内存中!Python 2.x 中的 xrange() 函数就是使用 generator 来构建列表。

上述例子说明:如果你想为一个很大的范围生成列表,那么就需要使用 generator 函数。如果你的内存有限,比如使用移动设备或边缘计算,使用这一方法尤其重要。

也就是说,如果你想对列表进行多次迭代,并且它足够小,可以放进内存,那最好使用 for 循环或 Python 2.x 中的 range 函数。因为 generator 函数和 xrange 函数将会在你每次访问它们时生成新的列表值,而 Python 2.x range 函数是静态的列表,而且整数已经置于内存中,以便快速访问。

# (1) Using a for loopv
numbers = list()

for i in range(1000):
    numbers.append(i+1)

total = sum(numbers)

# (2) Using a generator
 def generate_numbers(n):
     num, numbers = 1, []
     while num < n:
           numbers.append(num)
     num += 1
     return numbers
 total = sum(generate_numbers(1000))

 # (3) range() vs xrange()
 total = sum(range(1000 + 1))
 total = sum(xrange(1000 + 1))

原文地址:https://blog.51cto.com/14246112/2443427

时间: 2024-11-01 23:50:40

ython 的高级特征你知多少?来对比看看的相关文章

oracle系列(五)高级DBA必知的Oracle的备份与恢复(全录收集)

博主QQ:819594300 博客地址:http://zpf666.blog.51cto.com/ 有什么疑问的朋友可以联系博主,博主会帮你们解答,谢谢支持! 数据库备份与恢复是数据库管理员必须掌握的.没有任何系统能免遭硬盘物理损坏.粗心用户的错误操作.或一些可能会威胁到存储数据的潜在灾难的侵袭.为了能够最大限度地恢复数据库数据,保证数据库的安全运行,应该选择最合理的备份方法来防止各种故障所导致的用户数据丢失,本次主要介绍三种备份恢复技术,即RMAN技术.数据泵技术及闪回技术. 一.备份与恢复概

python高级特征:列表生成式;generator, 迭代器。

Python高级特性 列表生成式:不过一种语法糖 生成器:不过一个方法 迭代器: 列表生成式 Python内置的函数,来创建list. 简单的生成: >>> list(range(1,11)) [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] 复杂的生成:增加一个for循环. >>> a = [x*x for x in range(1, 11)] >>> a [1, 4, 9, 16, 25, 36, 49, 64, 81, 100] 还

Java高级特征

1.static关键字 1)static用法总结对于静态方法引用其他的静态方法和变量,在同个类中,直接调用,在不同类中,是用来类名加方法名或者类名加变量名,引用其他的非静态变量和方法,不管是否同一个类,都需要调用对象来使用.对于非静态的方法引用其他的静态和不静态的变量和方法,在同一个类中,直接用,在不同类中,静态方法和成员需要应用类名,而非静态方法和变量则需要调用对象来用. 2)对于static方法和static变量的注意事项static方法注意事项: ①.在静态方法中不能访问非静态成员方法和非

读书笔记--Java核心技术--高级特征

第一章--流与文件---------------------------------------------- 流 读写字节 java.io.InputStream 1.0 abstract int read() //从数据中读入一个字节,并返回该字节,在碰到流的结尾时返回-1 int read(byte[] b) //读入一个字节数组,并返回实际读入的字节数,或者在碰到流的结尾时返回-1 int read(byte[] b, int off, int len) //读入一个字节数组.这个rea

(记录)python篇:七_高级特征(1)

切片 L=list(range(100)) #L列表循环100次 >>>L[:10:2] #前10个数,每两个取一个 >>>L[:1] #:前没有数字默认为0,0到1 >>>L[3] #第3个数 >>>L[1:2] #1到2 >>>L[:-1] #0到-1,-1为倒数一个数,此时为0-99 >>>L[::-1] #0到:(:表示全部),(全部):到-1,此时0为倒数第一个数,也就是99-0 A=(1

特征工程之特征选择

特征工程是数据分析中最耗时间和精力的一部分工作,它不像算法和模型那样是确定的步骤,更多是工程上的经验和权衡.因此没有统一的方法.这里只是对一些常用的方法做一个总结.本文关注于特征选择部分.后面还有两篇会关注于特征表达和特征预处理. 1. 特征的来源 在做数据分析的时候,特征的来源一般有两块,一块是业务已经整理好各种特征数据,我们需要去找出适合我们问题需要的特征:另一块是我们从业务特征中自己去寻找高级数据特征.我们就针对这两部分来分别讨论. 2.  选择合适的特征 我们首先看当业务已经整理好各种特

特征工程-特征选择

转自:https://www.cnblogs.com/pinard/p/9032759.html 1. 特征的来源 在做数据分析的时候,特征的来源一般有两块,一块是业务已经整理好各种特征数据,我们需要去找出适合我们问题需要的特征:另一块是我们从业务特征中自己去寻找高级数据特征.我们就针对这两部分来分别讨论. 2.  选择合适的特征 我们首先看当业务已经整理好各种特征数据时,我们如何去找出适合我们问题需要的特征,此时特征数可能成百上千,哪些才是我们需要的呢? 第一步是找到该领域懂业务的专家,让他们

人不成熟的六大特征

一.人不成熟的第一个特征--就是马上要回报 他不懂得仅仅有春天播种.秋天才会收获. 非常多人在做不论什么事情的时候,刚刚付出一点点.立即就要得到回报.(学钢琴.学英语等等,刚開始就认为难.发现不行.立即就要放弃. ) 二.人不成熟的第二个特征--就是不自律 不自律的主要表如今哪里呢? 不愿改变自己: 你要改变自己的思考方式和行为模式,你要改变你的坏习惯.事实上,人与人之间能力是没有多大差别,差别在于思考方式的不同.一件事情的发生,你去问成功者和失败者,他们的回答是不一样的.甚至是相违背的.我们今

不拖控件ASP.NET——探知cookie和session(2)

    接着上篇的博客我们来讲解服务器端保存数据的机制-session     我们知道cookie是保存在客户端的,这样数据就存在一个不安全性,此外还有 一个问题就是不能够存储大量的数据,我们上篇博客还遗留一个问题就是客户端是可以篡改数据的,相当于保留在病人手上的病历本是可能被用户篡改的(一般情况下,用户不会篡改,这样多危险了,医生误诊怎么办?哈哈)     此外医生会给每个患者编制一个编号,并且自己再保存一个编号,这样当病人来的时候根据编号来识别病人的身份,当然用户会可以别人的编号猜出来自己