0042数据结构之AVL树

------------------------AVL树--------------------------

自平衡树:AVL树是一颗二分搜索树,同时左右子树的高度差不超过1,AVL是自平衡的

主要是通过左旋和右旋来维护平衡

统计一本书中共出现多少个单词,每个单词出现了多少次:使用AVL树实现Set和Map,Set用于统计共出现了多少个不同的单词,Map用于容纳每个单词出现的次数。

AVLTree实现如下:
package avl;

import java.util.ArrayList;

public class AVLTree<K extends Comparable<K>, V> {

    private class Node{
        public K key;
        public V value;
        public Node left, right;
        public int height;

        public Node(K key, V value){
            this.key = key;
            this.value = value;
            left = null;
            right = null;
            height = 1;
        }
    }

    private Node root;
    private int size;

    public AVLTree(){
        root = null;
        size = 0;
    }

    public int getSize(){
        return size;
    }

    public boolean isEmpty(){
        return size == 0;
    }

    // 判断该二叉树是否是一棵二分搜索树
    public boolean isBST(){

        ArrayList<K> keys = new ArrayList<>();
        inOrder(root, keys);
        for(int i = 1 ; i < keys.size() ; i ++)
            if(keys.get(i - 1).compareTo(keys.get(i)) > 0)
                return false;
        return true;
    }

    private void inOrder(Node node, ArrayList<K> keys){

        if(node == null)
            return;

        inOrder(node.left, keys);
        keys.add(node.key);
        inOrder(node.right, keys);
    }

    // 判断该二叉树是否是一棵平衡二叉树
    public boolean isBalanced(){
        return isBalanced(root);
    }

    // 判断以Node为根的二叉树是否是一棵平衡二叉树,递归算法
    private boolean isBalanced(Node node){

        if(node == null)
            return true;

        int balanceFactor = getBalanceFactor(node);
        if(Math.abs(balanceFactor) > 1)
            return false;
        return isBalanced(node.left) && isBalanced(node.right);
    }

    // 获得节点node的高度
    private int getHeight(Node node){
        if(node == null)
            return 0;
        return node.height;
    }

    // 获得节点node的平衡因子
    private int getBalanceFactor(Node node){
        if(node == null)
            return 0;
        return getHeight(node.left) - getHeight(node.right);
    }

    // 对节点y进行向右旋转操作,返回旋转后新的根节点x
    //        y                              x
    //       / \                           /   \
    //      x   T4     向右旋转 (y)        z     y
    //     / \       - - - - - - - ->    / \   / \
    //    z   T3                       T1  T2 T3 T4
    //   / \
    // T1   T2
    private Node rightRotate(Node y) {
        Node x = y.left;
        Node T3 = x.right;

        // 向右旋转过程
        x.right = y;
        y.left = T3;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 对节点y进行向左旋转操作,返回旋转后新的根节点x
    //    y                             x
    //  /  \                          /   \
    // T1   x      向左旋转 (y)       y     z
    //     / \   - - - - - - - ->   / \   / \
    //   T2  z                     T1 T2 T3 T4
    //      / \
    //     T3 T4
    private Node leftRotate(Node y) {
        Node x = y.right;
        Node T2 = x.left;

        // 向左旋转过程
        x.left = y;
        y.right = T2;

        // 更新height
        y.height = Math.max(getHeight(y.left), getHeight(y.right)) + 1;
        x.height = Math.max(getHeight(x.left), getHeight(x.right)) + 1;

        return x;
    }

    // 向二分搜索树中添加新的元素(key, value)
    public void add(K key, V value){
        root = add(root, key, value);
    }

    // 向以node为根的二分搜索树中插入元素(key, value),递归算法
    // 返回插入新节点后二分搜索树的根
    private Node add(Node node, K key, V value){

        if(node == null){
            size ++;
            return new Node(key, value);
        }

        if(key.compareTo(node.key) < 0)
            node.left = add(node.left, key, value);
        else if(key.compareTo(node.key) > 0)
            node.right = add(node.right, key, value);
        else // key.compareTo(node.key) == 0
            node.value = value;

        // 更新height
        node.height = 1 + Math.max(getHeight(node.left), getHeight(node.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(node);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(node.left) >= 0)
            return rightRotate(node);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(node.right) <= 0)
            return leftRotate(node);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(node.left) < 0) {
            node.left = leftRotate(node.left);
            return rightRotate(node);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(node.right) > 0) {
            node.right = rightRotate(node.right);
            return leftRotate(node);
        }

        return node;
    }

    // 返回以node为根节点的二分搜索树中,key所在的节点
    private Node getNode(Node node, K key){

        if(node == null)
            return null;

        if(key.equals(node.key))
            return node;
        else if(key.compareTo(node.key) < 0)
            return getNode(node.left, key);
        else // if(key.compareTo(node.key) > 0)
            return getNode(node.right, key);
    }

    public boolean contains(K key){
        return getNode(root, key) != null;
    }

    public V get(K key){

        Node node = getNode(root, key);
        return node == null ? null : node.value;
    }

    public void set(K key, V newValue){
        Node node = getNode(root, key);
        if(node == null)
            throw new IllegalArgumentException(key + " doesn‘t exist!");

        node.value = newValue;
    }

    // 返回以node为根的二分搜索树的最小值所在的节点
    private Node minimum(Node node){
        if(node.left == null)
            return node;
        return minimum(node.left);
    }

    // 从二分搜索树中删除键为key的节点
    public V remove(K key){

        Node node = getNode(root, key);
        if(node != null){
            root = remove(root, key);
            return node.value;
        }
        return null;
    }

    private Node remove(Node node, K key){

        if( node == null )
            return null;

        Node retNode;
        if( key.compareTo(node.key) < 0 ){
            node.left = remove(node.left , key);
            // return node;
            retNode = node;
        }
        else if(key.compareTo(node.key) > 0 ){
            node.right = remove(node.right, key);
            // return node;
            retNode = node;
        }
        else{   // key.compareTo(node.key) == 0

            // 待删除节点左子树为空的情况
            if(node.left == null){
                Node rightNode = node.right;
                node.right = null;
                size --;
                // return rightNode;
                retNode = rightNode;
            }

            // 待删除节点右子树为空的情况
            else if(node.right == null){
                Node leftNode = node.left;
                node.left = null;
                size --;
                // return leftNode;
                retNode = leftNode;
            }

            // 待删除节点左右子树均不为空的情况
            else{
                // 找到比待删除节点大的最小节点, 即待删除节点右子树的最小节点
                // 用这个节点顶替待删除节点的位置
                Node successor = minimum(node.right);
                //successor.right = removeMin(node.right);
                successor.right = remove(node.right, successor.key);
                successor.left = node.left;

                node.left = node.right = null;

                // return successor;
                retNode = successor;
            }
        }

        if(retNode == null)
            return null;

        // 更新height
        retNode.height = 1 + Math.max(getHeight(retNode.left), getHeight(retNode.right));

        // 计算平衡因子
        int balanceFactor = getBalanceFactor(retNode);

        // 平衡维护
        // LL
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) >= 0)
            return rightRotate(retNode);

        // RR
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) <= 0)
            return leftRotate(retNode);

        // LR
        if (balanceFactor > 1 && getBalanceFactor(retNode.left) < 0) {
            retNode.left = leftRotate(retNode.left);
            return rightRotate(retNode);
        }

        // RL
        if (balanceFactor < -1 && getBalanceFactor(retNode.right) > 0) {
            retNode.right = rightRotate(retNode.right);
            return leftRotate(retNode);
        }

        return retNode;
    }

}
AVLSet实现如下:
package avl;

public class AVLSet<E extends Comparable<E>> implements Set<E> {

    private AVLTree<E, Object> avl;

    public AVLSet(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(E e){
        avl.add(e, null);
    }

    @Override
    public boolean contains(E e){
        return avl.contains(e);
    }

    @Override
    public void remove(E e){
        avl.remove(e);
    }
}
AVLMap实现如下:
package avl;

public class AVLMap<K extends Comparable<K>, V> implements Map<K, V> {

    private AVLTree<K, V> avl;

    public AVLMap(){
        avl = new AVLTree<>();
    }

    @Override
    public int getSize(){
        return avl.getSize();
    }

    @Override
    public boolean isEmpty(){
        return avl.isEmpty();
    }

    @Override
    public void add(K key, V value){
        avl.add(key, value);
    }

    @Override
    public boolean contains(K key){
        return avl.contains(key);
    }

    @Override
    public V get(K key){
        return avl.get(key);
    }

    @Override
    public void set(K key, V newValue){
        avl.set(key, newValue);
    }

    @Override
    public V remove(K key){
        return avl.remove(key);
    }
}

原文地址:https://www.cnblogs.com/xiao1572662/p/12128289.html

时间: 2024-11-09 02:51:19

0042数据结构之AVL树的相关文章

数据结构之AVL树

说明:本文仅供学习交流,转载请标明出处,欢迎转载! 在前面的博文中,我们已经介绍了数据结构之二分查找树的相关知识,二分查找的提出主要是为了提高数据的查找效率.同一个元素集合可以对应不同的二分查找树BST,二分查找树的形态依赖于元素的插入顺序.同时我们也已经知道,如果将一个有序的数据集依次插入到二查找树中,此时二分查找树将退化为线性表,此时查找的时间复杂度为o(n).为了防止这一问题的出现,便有了平衡二叉树的存在价值.平衡二叉树从根本上将是为了防止出现斜二叉树的出现,从而进一步提高元素的查找效率,

个人项目:数据结构之AVL树的实现

AVL树为了防止树的深度过深出现的一种数据结构,在二叉树的基础上添加了一条规则:每个节点的左子数与右子树的高度最多差1. 其中的难点之一为:插入一个节点.删除一个节点更难,在这里采用懒惰删除法.其中,在插入的时候更新根节点路径上那些节点的所有高度. AVL节点: struct AvlNode { ElementType Element; AvlTree Left; AvlTree Right; int Height; };//问题一:当插入一个节点时,如何知道哪个节点失去平衡 在插入一个节点的时

数据结构之——AVL树

AVL树 AVL树又称为高度平衡的二叉搜索树,它能保持二叉树的高度平衡,尽量降低二叉树的高度,减少树的平均搜索长度: AVL树的性质 左子树和右子树的高度之差的绝对值不超过1 树中的每个左子树和右子树都是AVL树 下面实现一棵AVL树,主要实现其插入部分: #pragma once template <class K, class V> struct AVLTreeNode { K _key; V _val; AVLTreeNode<K, V>* _left; AVLTreeNod

[javaSE] 数据结构(AVL树基本概念)

AVL树是高度平衡的二叉树,任何节点的两个子树的高度差别<=1 实现AVL树 定义一个AVL树,AVLTree,定义AVLTree的节点内部类AVLNode,节点包含以下特性: 1.key——关键字,对AVL树的节点进行排序 2.left——左子树 3.right——右子树 4.height——高度 如果在AVL树插入节点后可能导致AVL树失去平衡,具体会有四种状态: LL:左左,LeftLeft LR:左右,LeftRight RL:右左,RightLeft RR:右右,RightRight

[算法] 数据结构之AVL树

1 .基本概念 AVL树的复杂程度真是比二叉搜索树高了整整一个数量级——它的原理并不难弄懂,但要把它用代码实现出来还真的有点费脑筋.下面我们来看看: 1.1  AVL树是什么? AVL树本质上还是一棵二叉搜索树(因此读者可以看到我后面的代码是继承自二叉搜索树的),它的特点是: 1. 本身首先是一棵二叉搜索树. 2. 带有平衡条件:每个结点的左右子树的高度之差的绝对值(平衡因子)最多为1. 例如: 5              5 / \            / \ 2   6         

大话数据结构—平衡二叉树(AVL树)

平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,其中每一个节点的左子树和右子树的高度差至多等于1. 平衡二叉树的前提是二叉排序树,不是二叉排序树的都不是平衡二叉树. 平衡因子BF(Balance Factor):二叉树上节点的左子树深度减去右子树深度的值. 最小不平衡子树:距离插入节点最近的,且平衡因子的绝对值大于1的节点为根的子树. 下图中,新插入节点37时,距离它最近的平

数据结构与算法分析-AVL树深入探讨

.title { text-align: center; margin-bottom: .2em } .subtitle { text-align: center; font-size: medium; font-weight: bold; margin-top: 0 } .todo { font-family: monospace; color: red } .done { font-family: monospace; color: green } .priority { font-fami

AVL树C++实现

1. AVL 树本质上还是一棵二叉搜索树,它的特点是: 本身首先是一棵二叉搜索树. 带有平衡条件: 每个结点的左右子树的高度之差的绝对值(平衡因子) 最多为 1. 2. 数据结构定义 AVL树节点类: 1 template <typename T> 2 class AVLTreeNode { 3 public: 4 T key; 5 AVLTreeNode<T>* parent; 6 AVLTreeNode<T>* left; 7 AVLTreeNode<T>

数据结构与算法系列----平衡二叉树(AVL树)

一:背景 平衡二叉树(又称AVL树)是二叉查找树的一个进化体,由于二叉查找树不是严格的O(logN),所以引入一个具有平衡概念的二叉树,它的查找速度是O(logN).所以在学习平衡二叉树之前,读者需要了解二叉查找树的实现,具体链接:二叉查找树 那么平衡是什么意思?我们要求对于一棵二叉查找树 ,它的每一个节点的左右子树高度之差不超过1.(对于树的高度的约定:空节点高度是0:叶子节点高度是1.)例如下图: 如果我们的二叉查找树是不平衡该怎么办?进行旋转.经过分析发现,出现不平衡无外乎四种情况,下面我