准备工作
下载并安装最新版本的Anaconda
下载并安装最新版本的Visual Studio Code
编辑器
Tips:
可以选择自己喜欢并且熟悉的编辑器或IDE。如:VIM、Emacs、Notepad++、Sublime、Pycharm等。
如果安装的是完整版本的Anaconda,会默认安装Spyder以及Jupyter Notebook。那么不想折腾编辑器的话,推荐使用这两款应用是足够的。
Visual Studio Code
推荐插件
- Python
可选插件
- vscode-icons
包管理器选择
Conda
Conda是目前比较常用的包管理工具,其大致功用于pip类似,这里使用Conda的原因,主要在于Conda除可以安装python的包外,还可以很方便的安装其他变成语言的包(如C++、C等)。这样的话,就可以很方便的解决有些数据分析的包依赖非python编写的程序包的问题。
为了能够直接在命令行中使用conda命令,这里将
Anaconda3\Scripts
目录添加到了环境变量中。
基本使用
创建虚拟环境:conda create -n <env_name> python=<python_version_num>
激活虚拟环境:activate <env_name>
安装程序包到指定虚拟环境:conda install -n <env_name> <pakcage_name>
关闭虚拟环境:deactivate
删除虚拟环境:conda remove <env_name> --all
删除虚拟环境中的某个包:conda remove --name <env_name> <package_name>
查看已安装包:conda list
查看已安装环境:conda env list
检查更新conda:conda update conda
更新所有程序包:conda update --all
常用包安装
安装好Anaconda后,可以使用Anaconda来管理包的安装。
如果是用于学习与研究,而不用与其他人协作或者能够有良好的约定的话,那么可以直接使用conda的默认的环境,这样就可以少安装很多包。
REM 基础包
conda install numpy
conda install scipy
conda install pandas
conda install matplotlib
REM ORM,用于连接数据库
conda install sqlalchemy
更改Conda的下载镜像
如果要使用的包并不包含在默认的conda环境中,又想加快下载速度与稳定性的话,可以添加国内的下载镜像。
在终端中执行以下命令:
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes
参考:
PIP
因为某些原因使用Conda可能无法顺利安装一些包,那么可以使用PIP来进行安装。
REM 更新PIP
python -m pip install --upgrade pip
REM 中国股票数据获取
pip install tushare
REM 导出当前环境所有依赖包信息
pip freeze > requirements.txt
REM 根据导出的依赖包信息安装包
pip install -r requirements.txt -d <your_download_dir>
常用包推荐
数据获取&爬虫
- Tushare:提供便捷的国内股票行情数据的获取(自动爬取相关网站数据)
- requests:一款优秀的HTTP Request包,可以用于与HTML/XML解析的包结合起来制作爬虫工具。
- urllib:Python3的内置包,主要用于访问、解析指定URL。
- Beautiful Soup:一个可以从HTML或XML文件中提取数据的Python库。
数据整理
- Numpy:提供强大的矩阵操作,以及一些非常有用的计算工具(如:irr、npv等)
- Pandas:提供强大的数据框操作(类似R语言中的DataFrame)
- SciPy:提供强大的统计工具。
数据可视化
数据库操作
- sqlalchemy:数据库建议使用自己熟悉的或项目统一要求的,如:Oracle、MySQL、PostgreSQL、MSSQL、SQLite等。
sqlalchemy
包可以有效的连接各类常用的数据库,并处理各类操作。
Numpy
通过观察Python的自有数据类型,我们可以发现Python原生并不提供多维数组的操作,那么为了处理矩阵,就需要使用第三方提供的相关的包。
NumPy 是一个非常优秀的提供矩阵操作的包。NumPy的主要目标,就是提供多维数组,从而实现矩阵操作。
NumPy’s main object is the homogeneous multidimensional array. It is a table of elements (usually numbers), all of the same type, indexed by a tuple of positive integers. In NumPy dimensions are called axes.
基本操作
#######################################
# 创建矩阵
#######################################
from numpy import array as matrix, arange
# 创建矩阵
a = arange(15).reshape(3,5)
a
# Out[10]:
# array([[0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.],
# [0., 0., 0., 0., 0.]])
b = matrix([2,2])
b
# Out[33]: array([2, 2])
c = matrix([[1,2,3,4,5,6],[7,8,9,10,11,12]], dtype=int)
c
# Out[40]:
# array([[ 1, 2, 3, 4, 5, 6],
# [ 7, 8, 9, 10, 11, 12]])
#######################################
# 创建特殊矩阵
#######################################
from numpy import zeros, ones,empty
z = zeros((3,4))
z
# Out[43]:
# array([[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]])
o = ones((3,4))
o
# Out[46]:
# array([[1., 1., 1., 1.],
# [1., 1., 1., 1.],
# [1., 1., 1., 1.]])
e = empty((3,4))
e
# Out[47]:
# array([[0., 0., 0., 0.],
# [0., 0., 0., 0.],
# [0., 0., 0., 0.]])
#######################################
# 矩阵数学运算
#######################################
from numpy import array as matrix, arange
a = arange(9).reshape(3,3)
a
# Out[10]:
# array([[0, 1, 2],
# [3, 4, 5],
# [6, 7, 8]])
b = arange(3)
b
# Out[14]: array([0, 1, 2])
a + b
# Out[12]:
# array([[ 0, 2, 4],
# [ 3, 5, 7],
# [ 6, 8, 10]])
a - b
# array([[0, 0, 0],
# [3, 3, 3],
# [6, 6, 6]])
a * b
# Out[11]:
# array([[ 0, 1, 4],
# [ 0, 4, 10],
# [ 0, 7, 16]])
a < 5
# Out[12]:
# array([[ True, True, True],
# [ True, True, False],
# [False, False, False]])
a ** 2
# Out[13]:
# array([[ 0, 1, 4],
# [ 9, 16, 25],
# [36, 49, 64]], dtype=int32)
a += 3
a
# Out[17]:
# array([[ 3, 4, 5],
# [ 6, 7, 8],
# [ 9, 10, 11]])
#######################################
# 矩阵内置操作
#######################################
from numpy import array as matrix, arange
a = arange(9).reshape(3,3)
a
# Out[10]:
# array([[0, 1, 2],
# [3, 4, 5],
# [6, 7, 8]])
a.max()
# Out[23]: 8
a.min()
# Out[24]: 0
a.sum()
# Out[25]: 36
#######################################
# 矩阵索引、拆分、遍历
#######################################
from numpy import array as matrix, arange
a = arange(25).reshape(5,5)
a
# Out[9]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19],
# [20, 21, 22, 23, 24]])
a[2,3] # 取第3行第4列的元素
# Out[3]: 13
a[0:3,3] # 取第1到3行第4列的元素
# Out[4]: array([ 3, 8, 13])
a[:,2] # 取所有第二列元素
# Out[7]: array([ 2, 7, 12, 17, 22])
a[0:3,:] # 取第1到3行的所有列
# Out[8]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14]])
a[-1] # 取最后一行
# Out[10]: array([20, 21, 22, 23, 24])
for row in a: # 逐行迭代
print(row)
# [0 1 2 3 4]
# [5 6 7 8 9]
# [10 11 12 13 14]
# [15 16 17 18 19]
# [20 21 22 23 24]
for element in a.flat: # 逐元素迭代,从左到右,从上到下
print(element)
# 0
# 1
# 2
# 3
# ...
#######################################
# 改变矩阵
#######################################
from numpy import array as matrix, arange
b = arange(20).reshape(5,4)
b
# Out[18]:
# array([[ 0, 1, 2, 3],
# [ 4, 5, 6, 7],
# [ 8, 9, 10, 11],
# [12, 13, 14, 15],
# [16, 17, 18, 19]])
b.ravel()
# Out[16]:
# array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,
# 17, 18, 19])
b.reshape(4,5)
# Out[17]:
# array([[ 0, 1, 2, 3, 4],
# [ 5, 6, 7, 8, 9],
# [10, 11, 12, 13, 14],
# [15, 16, 17, 18, 19]])
b.T # reshape 方法不改变原矩阵的值,所以需要使用 .T 来获取改变后的值
# Out[19]:
# array([[ 0, 4, 8, 12, 16],
# [ 1, 5, 9, 13, 17],
# [ 2, 6, 10, 14, 18],
# [ 3, 7, 11, 15, 19]])
#######################################
# 合并矩阵
#######################################
from numpy import array as matrix,newaxis
import numpy as np
d1 = np.floor(10*np.random.random((2,2)))
d2 = np.floor(10*np.random.random((2,2)))
d1
# Out[7]:
# array([[1., 0.],
# [9., 7.]])
d2
# Out[9]:
# array([[0., 0.],
# [8., 9.]])
np.vstack((d1,d2)) # 按列合并
# Out[10]:
# array([[1., 0.],
# [9., 7.],
# [0., 0.],
# [8., 9.]])
np.hstack((d1,d2)) # 按行合并
# Out[11]:
# array([[1., 0., 0., 0.],
# [9., 7., 8., 9.]])
np.column_stack((d1,d2)) # 按列合并
# Out[13]:
# array([[1., 0., 0., 0.],
# [9., 7., 8., 9.]])
c1 = np.array([11,12])
c2 = np.array([21,22])
np.column_stack((c1,c2))
# Out[14]:
# array([[11, 21],
# [12, 22]])
c1[:,newaxis] # 添加一个“空”列
# Out[18]:
# array([[11],
# [12]])
np.hstack((c1,c2))
# Out[27]: array([11, 12, 21, 22])
np.hstack((c1[:,newaxis],c2[:,newaxis]))
# Out[28]:
# array([[11, 21],
# [12, 22]])
参考
原文地址:https://www.cnblogs.com/abdm-989/p/12129141.html