bzoj4036 / P3175 [HAOI2015]按位或

bzoj4036 / P3175 [HAOI2015]按位或

是一个 min-max容斥 的板子题。

min-max容斥 式子:

$ \displaystyle max(S) = \sum_{T\sube S} (-1)^{|T|+1} min(T) $

并且很优秀的是,它在期望情况下成立!

这个有什么关系呢。。

如果每一位分开考虑,如果第 $ i $ 位变成 1 的期望时间是 $ T(i) $

那么求的是 $ E(max(T_{1\dots n})) $

这个可以 min-max容斥

求 $ min $ 的就是某一个子集让其中某一个变成 1 的期望次数。

考虑一次选择可以让这个子集的某一个变成 1 的概率,就是 1 - 这个子集所有位都是 0 的数字的概率的和,可以考虑令 $ S $ 是除了子集的位是0其他都是1的数(集合),概率就是 $ 1 - \sum_{A[i] \sube S} p_i $ 每次选择是等价的,所以期望就是 $ \frac{1}{p} $

然后minmax容斥式子种 $ |T| $ 其实就是 $ S $ 中 0 的个数,就是n - popcount

这个的计算其实就是半个 或卷积

复杂度 $ O(n2^n) $

#include<iostream>
#include<algorithm>
#include<cstring>
#include<cstdio>
#include<map>
using namespace std;
#define MAXN ( 1 << 21 ) + 6
int n;
double p[MAXN];

inline void FWT(double a[], int len) {
    for (int mid = 2; mid <= len; mid <<= 1)
        for (int i = 0; i < len; i += mid)
            for (int j = i; j < i + (mid >> 1); j++)
                a[j + (mid >> 1)] += a[j];
}

int main() {
    cin >> n;
    for( int i = 0 ; i < ( 1 << n ) ; ++ i ) scanf("%lf",&p[i]);
    FWT( p , ( 1 << n ) );
    double ans = 0.0;
    for( int i = 0 ; i < ( 1 << n ) - 1; ++ i ) {
        ans += ( ( n - __builtin_popcount( i ) & 1 ) ? 1.0 : -1.0 ) / ( 1.0 - p[i] );
    }
    if( ans > 1e50 ) puts("INF");
    else printf("%.7lf",ans);
}

原文地址:https://www.cnblogs.com/yijan/p/bzoj4036.html

时间: 2024-09-30 06:34:10

bzoj4036 / P3175 [HAOI2015]按位或的相关文章

luogu P3175 [HAOI2015]按位或

传送门 如果每个位置上的数字的意义是这个位置被加进集合的最早时间,那么我们要求的就是集合中最大数的期望,使用Min-Max容斥,\(E(max(S))=\sum_{T\subset S}(-1)^{|T|+1}E(min(T))\),这里的\(E(min(T))\)是集合中加进数字的期望时间,根据题意,加进一个集合数字概率为\(\sum_{s\cap T\ne\emptyset}P_s\),对应的期望,也就是\(E(min(T))=\frac{1}{\sum_{s\cap T\ne\emptys

BZOJ 4036: [HAOI2015]按位或 集合幂函数 莫比乌斯变换 莫比乌斯反演

http://www.lydsy.com/JudgeOnline/problem.php?id=4036 http://blog.csdn.net/lych_cys/article/details/50898726 http://blog.csdn.net/qq_21995319/article/details/49800999 for(int i=1;i<=1;i++) for(int j=1;j<=1;j++) f[i○j]=a[i]*b[j]; 当○为按位或时,这种运算就称为集合并卷积.

[HAOI2015]按位或——Min-Max容斥+FWT

题面 Bzoj4036 解析 考虑$ans=E(max(t[i])), i\in S, S=\begin{Bmatrix} 1,2,\cdots, n\end{Bmatrix}$,这里$t[i]$表示第$i$位变成$1$的时间,$E(max(t[i]))$表示最后变成$1$的一位的期望时间,暂时记为$E(max(S))$,注意这个不等于$max(E(S))$ 然后套上$Min-Max$容斥,$ans=\sum_{T \subseteq S}E(min(T))$,$E(min(T))$表示$T$中

[HAOI2015] 按位或 - Min-Max容斥,快速莫比乌斯变换

初态下,分数为 \(0\).每秒钟,随机选择一个 \([0,2^n-1]\) 的数字与当前的数字做按位或运算.选择数字 \(i\) 的概率是 \(p_i\),求分数达到 \(2^n-1\) 的期望时间.\(n\leq 20\) Solution 先介绍一下 Min-Max 容斥原理.设 \(\max(S),\min(S)\) 分别是集合 \(S\) 中的最大值与最小值,则有 \[ \max(S)=\sum_{T\subseteq S} (-1)^{|T|+1} \min(T) \\min(S)=

bzoj 4036 [HAOI2015]按位或——min-max容斥+FMT

题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4036 题解:https://www.cnblogs.com/Zinn/p/10260126.html #include<cstdio> #include<cstring> #include<algorithm> #define db double using namespace std; const int N=25,M=(1<<20)+5; int

[HAOI2015]按位或

Description 刚开始你有一个数字0,每一秒钟你会随机选择一个[0,2^n-1]的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作.选择数字i的概率是p[i].保证0<=p[i]<=1,Σp[i]=1问期望多少秒后,你手上的数字变成2^n-1. Input 第一行输入n表示n个元素,第二行输入2^n个数,第i个数表示选到i-1的概率 Output 仅输出一个数表示答案,绝对误差或相对误差不超过1e-6即可算通过.如果无解则要输出INF Sample Input 2

min-max容斥

这玩意儿一般都是跟概率期望结合的吧,就是下面这个式子(\(max(S)\)代表集合\(S\)中的最大值,\(min(S)\)同理): \[max(S)=\sum\limits_{T\subseteq S}(-1)^{\left | T \right |-1}min(T)\] 证明的话就考虑第\(k\)大的元素对\(max(S)\)的贡献就行了,把式子列出来之后你会发现它的贡献只有在\(k=1\)时才为\(1\),在\(k>1\)全部为\(0\) 能用它做的期望题一般都是这样的:每次操作把集合中的

bzoj4036[HAOI2015]set 按位或

Vfk的集合幂级数论文的例题-.随机集合并为全集的期望集合数-.这篇题解里的东西基本来自vfk的论文. 首先根据期望的线性性,我们把需要走第1步的概率(一定为1)加上需要走第2步的概率(等于走了第一步之后没有得到全集的概率)加上需要走第3步的概率(等于走了两步之后没有得到全集的概率)-.一直加到需要走正无穷步的概率就是期望的步数.那么走了x步之后没有得到全集的概率等于走了x步之后得到不是全集的集合的概率之和.那么我们用集合并卷积定义乘法,把给出的概率视作集合幂级数,求集合幂级数的等比数列之和,把

按位或「HAOI2015」

题意 刚开始你有一个数字\(0\),每一秒钟你会随机选择一个\([0,2^n-1]\)的数字,与你手上的数字进行或(c++,c的|,pascal的or)操作.选择数字\(i\)的概率是\(p[i]\).保证\(0<=p[i]<=1\),\(Σp[i]=1\)问期望多少秒后,你手上的数字变成\(2^n-1\). 思路 minmax容斥加上高维前缀和. minmax容斥就是两个式子: \[E(MAX(S))=\sum_{T\subseteq S}(-1)^{|T|-1}E(MIN(T))\] \[