系列博客,原文在笔者所维护的github上:https://aka.ms/beginnerAI,
点击star加星不要吝啬,星越多笔者越努力。
4.2 梯度下降法
有了上一节的最小二乘法做基准,我们这次用梯度下降法求解w和b,从而可以比较二者的结果。
4.2.1 数学原理
在下面的公式中,我们规定x是样本特征值(单特征),y是样本标签值,z是预测值,下标 \(i\) 表示其中一个样本。
预设函数(Hypothesis Function)
为一个线性函数:
\[z_i = x_i \cdot w + b \tag{1}\]
损失函数(Loss Function)
为均方差函数:
\[loss(w,b) = \frac{1}{2} (z_i-y_i)^2 \tag{2}\]
与最小二乘法比较可以看到,梯度下降法和最小二乘法的模型及损失函数是相同的,都是一个线性模型加均方差损失函数,模型用于拟合,损失函数用于评估效果。
区别在于,最小二乘法从损失函数求导,直接求得数学解析解,而梯度下降以及后面的神经网络,都是利用导数传递误差,再通过迭代方式一步一步逼近近似解。
4.2.2 梯度计算
计算z的梯度
根据公式2:
\[
{\partial loss \over \partial z_i}=z_i - y_i \tag{3}
\]
计算w的梯度
我们用loss的值作为误差衡量标准,通过求w对它的影响,也就是loss对w的偏导数,来得到w的梯度。由于loss是通过公式2->公式1间接地联系到w的,所以我们使用链式求导法则,通过单个样本来求导。
根据公式1和公式3:
\[
{\partial{loss} \over \partial{w}} = \frac{\partial{loss}}{\partial{z_i}}\frac{\partial{z_i}}{\partial{w}}=(z_i-y_i)x_i \tag{4}
\]
计算b的梯度
\[
\frac{\partial{loss}}{\partial{b}} = \frac{\partial{loss}}{\partial{z_i}}\frac{\partial{z_i}}{\partial{b}}=z_i-y_i \tag{5}
\]
4.2.3 代码实现
if __name__ == '__main__':
reader = SimpleDataReader()
reader.ReadData()
X,Y = reader.GetWholeTrainSamples()
eta = 0.1
w, b = 0.0, 0.0
for i in range(reader.num_train):
# get x and y value for one sample
xi = X[i]
yi = Y[i]
# 公式1
zi = xi * w + b
# 公式3
dz = zi - yi
# 公式4
dw = dz * xi
# 公式5
db = dz
# update w,b
w = w - eta * dw
b = b - eta * db
print("w=", w)
print("b=", b)
大家可以看到,在代码中,我们完全按照公式推导实现了代码,所以,大名鼎鼎的梯度下降,其实就是把推导的结果转化为数学公式和代码,直接放在迭代过程里!另外,我们并没有直接计算损失函数值,而只是把它融入在公式推导中。
4.2.4 运行结果
w= [1.71629006]
b= [3.19684087]
读者可能会注意到,上面的结果和最小二乘法的结果(w1=2.056827, b1=2.965434)相差比较多,这个问题我们留在本章稍后的地方解决。
代码位置
ch04, Level2
原文地址:https://www.cnblogs.com/woodyh5/p/11988496.html