机器学习-朴素贝叶斯应用-判断垃圾邮件

文章中代码均来自于《机器学习实战》
这个程序没有邮件的文件的话是不能运行的,要是想试试可以去网上搞搞文件

'''
Created on Oct 19, 2010

@author: Peter
'''
#和其他复杂模型不一样,朴素贝叶斯的思想和操作比较简单,它一般是内嵌在处理具体问题的函数中的,而不像神经网络模型或者决策树等等有自己独立的方法
from numpy import *
def createVocabList(dataSet):
    #将data中出现的所有词放在一个列表中
    vocabSet = set([])  #create empty set
    for document in dataSet:
        vocabSet = vocabSet | set(document) #union of the two sets,也就是并集
    return list(vocabSet)
def setOfWords2Vec(vocabList, inputSet):
    #返回训练集中的哪些词在这个样本中出现了
    #vocabList是词库,inputSet是输入的该条样本
    returnVec = [0]*len(vocabList)#创建一个所含元素都为0的向量
    for word in inputSet:
        if word in vocabList:#判断是不是输入的样本中的所有词都训练过
            returnVec[vocabList.index(word)] = 1#出现了
        else: print("the word: %s is not in my Vocabulary!" % word)
    return returnVec
def trainNB0(trainMatrix,trainCategory):#朴素贝叶斯分类器训练函数
    #接受的输入(trainMatrix)是用词袋或者词集处理后的01数组,不能直接传源数据过来啊
    #trainMatrix是训练集data,trainCategory是训练集样本的labels
    numTrainDocs = len(trainMatrix)#训练集样本个数
    numWords = len(trainMatrix[0])#训练集中单词一共有多少个
    pAbusive = sum(trainCategory)/float(numTrainDocs)#返回的结果是“训练集中样本有多少百分比是侮辱性文档”,即P(ci)
    #初始化概率的分子变量
    p0Num = ones(numWords)
    p1Num = ones(numWords)
    #初始化概率的分母变量
    p0Denom = 2.0; p1Denom = 2.0
    #遍历所有data
    for i in range(numTrainDocs):
        if trainCategory[i] == 1:
            p1Num += trainMatrix[i]#p1Num统计总体中的哪些词出现在了被标记为侮辱性的文档中,它不是一个数,而是一个向量,是侮辱性文档中字符出现的叠加
            #例如[0,1,2,0],0表示这个词从来没有在侮辱性文档中出现过,而1,2,3分别表示他们出现了1次、2、3次
            p1Denom += sum(trainMatrix[i])#侮辱性文档的总词数
        else:
            p0Num += trainMatrix[i]#同上,只不过这次操作的是非侮辱性的那些
            p0Denom += sum(trainMatrix[i])
    #对每个元素做除法求概率
    p1Vect = log(p1Num/p1Denom)          #change to log(),原本的朴素贝叶斯模型中这里应该是不带log的,它表示的是P(w|ci),这里是改进后的模型
    #注意,p1Vect是一个数组,每个元素表示已知是侮辱性文档的前提下这个词出现的概率,就是P(wj|ci)
    p0Vect = log(p0Num/p0Denom)          #change to log()
    return p0Vect,p1Vect,pAbusive#返回P(w|ci)和P(ci)

def classifyNB(vec2Classify, p0Vec, p1Vec, pClass1):
    p1 = sum(vec2Classify * p1Vec) + log(pClass1)    #p1是判断为侮辱性文档的概率,即P(Ci)=P(Ci|w)P(w)
    #按元素相乘再相加,为什么是加上log(pClass1),不应该是P(w|ci)*P(ci)吗,因为这里我们改进了,都把他们做了log变换,所以原来的乘法自然也变成加法了
    """
    1. 为什么要改进成log:
    小数连乘会造成所得值几乎等于 0 的结果,从而无法比较大小。鉴于此,往往在实际运算中,会借助 log 函数
    因为概率处于[0,1]区间,由log的函数图像可知,这样改造之后不会改变增减性,但是会起到特征放大的作用
    2.为什么没计算P(w):
    贝叶斯式子的那个分母在比较的时候根本不需要,就不算了
    """
    """
    *(星号)运算的作用
    对数组执行对应位置相乘
    对矩阵执行矩阵乘法运算
    """
    p0 = sum(vec2Classify * p0Vec) + log(1.0 - pClass1)
    if p1 > p0:
        return 1
    else:
        return 0

def bagOfWords2VecMN(vocabList, inputSet):
    returnVec = [0]*len(vocabList)
    for word in inputSet:
        if word in vocabList:
            returnVec[vocabList.index(word)] += 1
        else:
            print("the word: %s is not in my Vocabulary!" % word)
    return returnVec
def textParse(bigString):    #input is big string, #output is word list
    import re#re包:正则表达式的支持
    listOfTokens = re.split('\\W+',bigString)
    #print(listOfTokens)
    """
    这个函数和书上的不太一样,改了正则表达式,具体的可以看这个:
    https://www.cnblogs.com/jiading/p/11632618.html
    """
    return [tok.lower() for tok in listOfTokens if len(tok) > 2] #返回一个处理后的数组

def spamTest():
    docList=[]; classList = []; fullText =[]
    for i in range(1,26):
        #注意这里面有些文档是EASCII码格式的,直接读会报错,需要先把他们的格式改了。
        #可以先print(i)看看是卡在哪个文件上了,然后将其改为ASCII格式
        openTextParse=open('email/spam/%d.txt' % i,encoding='ascii')
        readTextParse=openTextParse.read()#读取一行文件
        #print(i,'-readTextParsead:',readTextParse)
        #print(i,'-readTextParse\'s type:',type(readTextParse))
        wordList = textParse(readTextParse)#送到textParse进行处理,将读入的字符串切割为字符数组
        #print(i,'-wordList:',wordList)
        docList.append(wordList)#保存这条记录
        fullText.extend(wordList)#在总词库中加上这条记录的词
        #注意上面这个命令,它和下面创建的vocabList的区别就是它是不去重的!
        classList.append(1)#保存label,这是spam
        openText=open('email/ham/%d.txt' % i,encoding='ascii')
        #print(i)
        wordList = openText.read()
        docList.append(wordList)
        fullText.extend(wordList)
        classList.append(0)#这是ham
    vocabList = createVocabList(docList)#create vocabulary
    trainingSet = list(range(50)); testSet=[]           #create test set
    """
    这里不能再用原来的trainingSet=range(50)了
    原因:python3.x   range返回的是range对象,不返回数组对象
    trainingSet里面是数组,元素是0-49
    """
    for i in range(10):#随意选10个作为测试集
        randIndex = int(random.uniform(0,len(trainingSet)))#随便选一个
        #print(i,':',randIndex)
        testSet.append(trainingSet[randIndex])
        del(trainingSet[randIndex])  #就是把那个作为index的数删掉,不动源数据,这是很重要的,别随随便便改源数据
    trainMat=[]; trainClasses = []
    for docIndex in trainingSet:#train the classifier (get probs) trainNB0
        trainMat.append(bagOfWords2VecMN(vocabList, docList[docIndex]))#把词袋模型的结果(01数组)传进去
        trainClasses.append(classList[docIndex])#传入label
    p0V,p1V,pSpam = trainNB0(array(trainMat),array(trainClasses))
    errorCount = 0
    for docIndex in testSet:        #算算有没有归类错误的
        wordVector = bagOfWords2VecMN(vocabList, docList[docIndex])
        if classifyNB(array(wordVector),p0V,p1V,pSpam) != classList[docIndex]:
            errorCount += 1
            print("classification error",docList[docIndex])
    print('the error rate is: ',float(errorCount)/len(testSet))
    #return vocabList,fullText

原文地址:https://www.cnblogs.com/jiading/p/11632737.html

时间: 2024-10-09 23:16:49

机器学习-朴素贝叶斯应用-判断垃圾邮件的相关文章

朴素贝叶斯应用:垃圾邮件分类

import nltk nltk.download() from nltk.corpus import stopwords from nltk.stem import WordNetLemmatizer #预处理 def preprocessing(text): tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokrnize(sent)] stops = stopwords.words('eng

机器学习—朴素贝叶斯

机器学习-朴素贝叶斯 本文代码均来自<机器学习实战> 朴素贝叶斯的两个基本假设: 独立:一个特征出现的可能性和与它和其他特征相邻没有关系 每个特征同等重要 这段代码是以文本分类为例介绍朴素贝叶斯算法的 要从文本中获取特征,需要先拆分文本.这里的特征是来自文本的词条(token),一个词条是字符的任意组合.可以把词条想象为单词,也可以使用非单词词条,如URL.IP地址或者任意其他字符串.然后将一个文本片段表示为一个词向量,其中值为1表示词条出现,0表示词条未出现. ??以在线社区的留言板为例,为

贝叶斯过滤器过滤垃圾邮件

贝叶斯过滤器过滤垃圾邮件 什么是贝叶斯过滤器? 垃圾邮件是一种令人头痛的顽症,困扰着所有的互联网用户. 正确识别垃圾邮件的技术难度非常大.传统的垃圾邮件过滤方法,主要有"关键词法"和"校验码法"等.前者的过滤依据是特定的词语:后者则是计算邮件文本的校验码,再与已知的垃圾邮件进行对比.它们的识别效果都不理想,而且很容易规避. 2002年,Paul Graham提出使用"贝叶斯推断"过滤垃圾邮件.他说,这样做的效果,好得不可思议.1000封垃圾邮件可

机器学习-朴素贝叶斯原理及Python实现

机器学习-朴素贝叶斯原理及Python实现 贝叶斯公式 P(A|B) = (P(B|A)P(A))/P(B) 举例:苹果10个,有2个黄色:梨10个,有6个黄色,求拿出一个黄色水果,是苹果的概率. 代入公式: P(苹果|黄色) = (P(黄色|苹果)P(苹果))/P(黄色) P(黄色) = (2+6)/20 = 2/5 P(苹果) = 10/20 = 1/2 = 0.5 P(黄色|苹果)=1/5 P(黄色|苹果)P(苹果) = P(黄色,苹果) = 1/5*1/2 = 1/10 = 0.1 P(

通俗机器学习—朴素贝叶斯

引言 机器学习分类中的k近邻法和决策树师确定的分类算法,数据实例最终会被明确划分到某个分类中,本节我们讨论的分类算法将不能 完全确定数据实例应该划分到某个分类,或者智能给出数据实例属于给定分类的概率 一 朴素贝叶斯算法 1. 简介 Na?veBayes算法,又叫朴素贝叶斯算法,朴素:特征条件独立:贝叶斯:基于贝叶斯定理.属于监督学习的生成模型,实现简单,没有迭代,并有坚实的数学理论(即贝叶斯定理)作为支撑.在大量样本下会有较好的表现,不适用于输入向量的特征条件有关联的场景. 2. 基本思想 (1

机器学习——朴素贝叶斯(NBC)

朴素贝叶斯分类(NBC)是机器学习中最基本的分类方法,是其他众多分类算法分类性能的对比基础,其他的算法在评价性能时都在NBC的基础上进行.同时,对于所有机器学习方法,到处都蕴含着Bayes统计的思想. 朴素贝叶斯基于贝叶斯地理和特征条件独立性假设,首先基于条件独立性假设学习输入X和输出Y的联合分布P(X,Y),同时利用先验概率P(Y),根据贝叶斯定理计算出后验概率P(Y|X),找出每个类别的最大的后验概率即确定为相应的类别.算法实现简单,学习和预测的效率都很高, 基本定义 输入空间Rn为特征化的

通俗易懂机器学习——朴素贝叶斯算法

本文将叙述朴素贝叶斯算法的来龙去脉,从数学推导到计算演练到编程实战 文章内容有借鉴网络资料.李航<统计学习方法>.吴军<数学之美>加以整理及补充 基础知识补充: 1.贝叶斯理论–吴军数学之美 http://mindhacks.cn/2008/09/21/the-magical-bayesian-method/ 2.条件概率 3.联合分布 朴素贝叶斯算法 朴素贝叶斯法是基于贝叶斯定理和特征条件独立假设的 分类方法.给定训练数据集,首先基于特征条件独立假设学习 输入/输出的联合概率分布

机器学习--朴素贝叶斯算法原理、方法及代码实现

一.朴素的贝叶斯算法原理 贝叶斯分类算法以样本可能属于某类的概率来作为分类依据,朴素贝叶斯分类算法是贝叶斯分类算法中最简单的一种,朴素的意思是条件概率独立性. 条件概率的三个重要公式: (1)概率乘法公式: P(AB)= P(B) P(A|B) = P(A) P(B|A) =P(BA) (2)全概率公式:        (3)贝叶斯公式:            如果一个事物在一些属性条件发生的情况下,事物属于A的概率>属于B的概率,则判定事物属于A,这就是朴素贝叶斯的基本思想. 二.算法步骤 (

机器学习--朴素贝叶斯算法案例

电子邮件垃圾过滤 1.如何从文本文档中构建自己的词列表.使用正则表达式切分句子,并将字符串全部转换为小写. #################################### # 功能:切分文本 # 输入变量:大字符串 big_string # 输出变量:字符串列表 #################################### def text_parse(big_string): list_of_tokens = re.split(r'\W*', big_string) re