Python3网络爬虫实战-33、数据存储:非关系型数据库存储:MongoDB

NoSQL,全称 Not Only SQL,意为不仅仅是 SQL,泛指非关系型的数据库。NoSQL 是基于键值对的,而且不需要经过 SQL 层的解析,数据之间没有耦合性,性能非常高。

非关系型数据库又可以细分如下:

  • 键值存储数据库,代表有 Redis, Voldemort, Oracle BDB 等。
  • 列存储数据库,代表有 Cassandra, HBase, Riak 等。
  • 文档型数据库,代表有 CouchDB, MongoDB 等。
  • 图形数据库,代表有 Neo4J, InfoGrid, Infinite Graph等。

对于爬虫的数据存储来说,一条数据可能存在某些字段提取失败而缺失的情况,而且数据可能随时调整,另外数据之间能还存在嵌套关系。如果我们使用了关系型数据库存储,一是需要提前建表,二是如果存在数据嵌套关系的话需要进行序列化操作才可以存储,比较不方便。如果用了非关系数据库就可以避免一些麻烦,简单高效。

本节我们主要介绍一下 MongoDB 和 Redis 的数据存储操作。

MongoDB存储

MongoDB 是由 C++ 语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似 Json 对象,它的字段值可以包含其他文档,数组及文档数组,非常灵活,在这一节我们来看一下 Python3 下 MongoDB 的存储操作。

1. 准备工作

在本节开始之前请确保已经安装好了 MongoDB 并启动了其服务,另外安装好了 Python 的 PyMongo库,如没有安装可以参考第一章的安装过程。

2. 连接MongoDB

连接 MongoDB 我们需要使用 PyMongo 库里面的 MongoClient,一般来说传入 MongoDB 的 IP 及端口即可,第一个参数为地址 host,第二个参数为端口 port,端口如果不传默认是 27017。

import pymongo
client = pymongo.MongoClient(host=‘localhost‘, port=27017)

这样我们就可以创建一个 MongoDB 的连接对象了。

另外 MongoClient 的第一个参数 host 还可以直接传MongoDB 的连接字符串,以 mongodb 开头,例如:

client = MongoClient(‘mongodb://localhost:27017/‘)

可以达到同样的连接效果。

3. 指定数据库

MongoDB 中还分为一个个数据库,我们接下来的一步就是指定要操作哪个数据库,在这里我以 test 数据库为例进行说明,所以下一步我们需要在程序中指定要使用的数据库。

db?= client.test

调用 client 的 test 属性即可返回 test 数据库,当然也可以这样来指定:

db?= client[‘test‘]

两种方式是等价的。

4. 指定集合

MongoDB 的每个数据库又包含了许多集合 Collection,也就类似与关系型数据库中的表,下一步我们需要指定要操作的集合,在这里我们指定一个集合名称为 students,学生集合,还是和指定数据库类似,指定集合也有两种方式:

collection = db.students

collection = db[‘students‘]

这样我们便声明了一个 Collection 对象。

5. 插入数据

接下来我们便可以进行数据插入了,对于 students 这个Collection,我们新建一条学生数据,以字典的形式表示:

student = {
    ‘id‘: ‘20170101‘,
    ‘name‘: ‘Jordan‘,
    ‘age‘: 20,
    ‘gender‘: ‘male‘
}
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

在这里我们指定了学生的学号、姓名、年龄和性别,然后接下来直接调用 collection 的 insert() 方法即可插入数据,代码如下:

result = collection.insert(student)
print(result)

在 MongoDB 中,每条数据其实都有一个 _id 属性来唯一标识,如果没有显式指明 _id,MongoDB 会自动产生一个 ObjectId 类型的 _id 属性。insert() 方法会在执行后返回的 _id 值。

运行结果:

5932a68615c2606814c91f3d

当然我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:

student1 = {
    ‘id‘: ‘20170101‘,
    ‘name‘: ‘Jordan‘,
    ‘age‘: 20,
    ‘gender‘: ‘male‘
}

student2 = {
    ‘id‘: ‘20170202‘,
    ‘name‘: ‘Mike‘,
    ‘age‘: 21,
    ‘gender‘: ‘male‘
}

result = collection.insert([student1, student2])
print(result)

返回的结果是对应的 _id 的集合,运行结果:

[ObjectId(‘5932a80115c2606a59e8a048‘), ObjectId(‘5932a80115c2606a59e8a049‘)]

实际上在 PyMongo 3.X 版本中,insert() 方法官方已经不推荐使用了,当然继续使用也没有什么问题,官方推荐使用 insert_one() 和 insert_many() 方法将插入单条和多条记录分开。

student = {
    ‘id‘: ‘20170101‘,
    ‘name‘: ‘Jordan‘,
    ‘age‘: 20,
    ‘gender‘: ‘male‘
}

result = collection.insert_one(student)
print(result)
print(result.inserted_id)

运行结果:

<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5

返回结果和 insert() 方法不同,这次返回的是InsertOneResult 对象,我们可以调用其 inserted_id 属性获取 _id。

对于 insert_many() 方法,我们可以将数据以列表形式传递即可,示例如下:

student1 = {
    ‘id‘: ‘20170101‘,
    ‘name‘: ‘Jordan‘,
    ‘age‘: 20,
    ‘gender‘: ‘male‘
}

student2 = {
    ‘id‘: ‘20170202‘,
    ‘name‘: ‘Mike‘,
    ‘age‘: 21,
    ‘gender‘: ‘male‘
}

result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)

insert_many() 方法返回的类型是 InsertManyResult,调用inserted_ids 属性可以获取插入数据的 _id 列表,运行结果:

<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId(‘5932abf415c2607083d3b2ac‘), ObjectId(‘5932abf415c2607083d3b2ad‘)]

6. 查询

插入数据后我们可以利用 find_one() 或 find() 方法进行查询,find_one() 查询得到是单个结果,find() 则返回一个生成器对象。

result = collection.find_one({‘name‘: ‘Mike‘})
print(type(result))
print(result)

在这里我们查询 name 为 Mike 的数据,它的返回结果是字典类型,运行结果:

<class ‘dict‘>
{‘_id‘: ObjectId(‘5932a80115c2606a59e8a049‘), ‘id‘: ‘20170202‘, ‘name‘: ‘Mike‘, ‘age‘: 21, ‘gender‘: ‘male‘}

可以发现它多了一个 _id 属性,这就是 MongoDB 在插入的过程中自动添加的。

我们也可以直接根据 ObjectId 来查询,这里需要使用 bson 库里面的 ObjectId。

from bson.objectid import ObjectId

result = collection.find_one({‘_id‘: ObjectId(‘593278c115c2602667ec6bae‘)})
print(result)

其查询结果依然是字典类型,运行结果:

{‘_id‘:?ObjectId(‘593278c115c2602667ec6bae‘),?‘id‘:?‘20170101‘,?‘name‘:?‘Jordan‘,?‘age‘:?20,?‘gender‘:?‘male‘}

当然如果查询结果不存在则会返回 None。

对于多条数据的查询,我们可以使用 find() 方法,例如在这里查找年龄为 20 的数据,示例如下:

results = collection.find({‘age‘: 20})
print(results)
for result in results:
    print(result)

运行结果:

<pymongo.cursor.Cursor object at 0x1032d5128>
{‘_id‘: ObjectId(‘593278c115c2602667ec6bae‘), ‘id‘: ‘20170101‘, ‘name‘: ‘Jordan‘, ‘age‘: 20, ‘gender‘: ‘male‘}
{‘_id‘: ObjectId(‘593278c815c2602678bb2b8d‘), ‘id‘: ‘20170102‘, ‘name‘: ‘Kevin‘, ‘age‘: 20, ‘gender‘: ‘male‘}
{‘_id‘: ObjectId(‘593278d815c260269d7645a8‘), ‘id‘: ‘20170103‘, ‘name‘: ‘Harden‘, ‘age‘: 20, ‘gender‘: ‘male‘}
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

返回结果是 Cursor 类型,相当于一个生成器,我们需要遍历取到所有的结果,每一个结果都是字典类型。

如果要查询年龄大于 20 的数据,则写法如下:

results?= collection.find({‘age‘: {‘$gt‘:?20}})

在这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号 $gt,意思是大于,键值为 20,这样便可以查询出所有年龄大于 20 的数据。

在这里将比较符号归纳如下表:

符号 含义 示例
$lt 小于 {‘age‘: {‘$lt‘: 20}}
$gt 大于 {‘age‘: {‘$gt‘: 20}}
$lte 小于等于 {‘age‘: {‘$lte‘: 20}}
$gte 大于等于 {‘age‘: {‘$gte‘: 20}}
$ne 不等于 {‘age‘: {‘$ne‘: 20}}
$in 在范围内 {‘age‘: {‘$in‘: [20, 23]}}
$nin 不在范围内 {‘age‘: {‘$nin‘: [20, 23]}}

另外还可以进行正则匹配查询,例如查询名字以 M 开头的学生数据,示例如下:

results?= collection.find({‘name‘: {‘$regex‘:?‘^M.*‘}})

在这里使用了 $regex 来指定正则匹配,^M.* 代表以 M 开头的正则表达式,这样就可以查询所有符合该正则的结果。

在这里将一些功能符号再归类如下:

符号 含义 示例 示例含义
$regex 匹配正则 {‘name‘: {‘$regex‘: ‘^M.*‘}} name 以 M开头
$exists 属性是否存在 {‘name‘: {‘$exists‘: True}} name 属性存在
$type 类型判断 {‘age‘: {‘$type‘: ‘int‘}} age 的类型为 int
$mod 数字模操作 {‘age‘: {‘$mod‘: [5, 0]}} 年龄模 5 余 0
$text 文本查询 {‘$text‘: {‘$search‘: ‘Mike‘}} text 类型的属性中包含 Mike 字符串
$where 高级条件查询 {‘$where‘: ‘obj.fans_count == obj.follows_count‘} 自身粉丝数等于关注数

这些操作的更详细用法在可以在 MongoDB 官方文档找到:?https://docs.mongodb.com/manu...。

7. 计数

要统计查询结果有多少条数据,可以调用 count() 方法,如统计所有数据条数:

count = collection.find().count()
print(count)

或者统计符合某个条件的数据:

count = collection.find({‘age‘: 20}).count()
print(count)

结果是一个数值,即符合条件的数据条数。

8. 排序

可以调用 sort() 方法,传入排序的字段及升降序标志即可,示例如下:

results = collection.find().sort(‘name‘, pymongo.ASCENDING)
print([result[‘name‘] for result in results])

运行结果:

[‘Harden‘, ‘Jordan‘, ‘Kevin‘, ‘Mark‘, ‘Mike‘]

在这里我们调用了 pymongo.ASCENDING 指定升序,如果要降序排列可以传入 pymongo.DESCENDING。

9. 偏移

在某些情况下我们可能想只取某几个元素,在这里可以利用skip() 方法偏移几个位置,比如偏移 2,就忽略前 2 个元素,得到第三个及以后的元素。

results = collection.find().sort(‘name‘, pymongo.ASCENDING).skip(2)
print([result[‘name‘] for result in results])

运行结果:

[‘Kevin‘, ‘Mark‘, ‘Mike‘]

另外还可以用 limit() 方法指定要取的结果个数,示例如下:

results = collection.find().sort(‘name‘, pymongo.ASCENDING).skip(2).limit(2)
print([result[‘name‘] for result in results])

运行结果:

[‘Kevin‘, ‘Mark‘]

如果不加 limit() 原本会返回三个结果,加了限制之后,会截取 2 个结果返回。

值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,很可能会导致内存溢出,可以使用类似如下操作来进行查询:

from bson.objectid import ObjectId
collection.find({‘_id‘: {‘$gt‘: ObjectId(‘593278c815c2602678bb2b8d‘)}})

这时记录好上次查询的 _id。

10. 更新

对于数据更新可以使用 update() 方法,指定更新的条件和更新后的数据即可,例如:

condition = {‘name‘: ‘Kevin‘}
student = collection.find_one(condition)
student[‘age‘] = 25
result = collection.update(condition, student)
print(result)
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

在这里我们将 name 为 Kevin 的数据的年龄进行更新,首先指定查询条件,然后将数据查询出来,修改年龄,之后调用 update() 方法将原条件和修改后的数据传入,即可完成数据的更新。

运行结果:

{‘ok‘:?1,?‘nModified‘:?1,?‘n‘:?1,?‘updatedExisting‘:?True}

返回结果是字典形式,ok 即代表执行成功,nModified 代表影响的数据条数。

另外我们也可以使用 $set 操作符对数据进行更新,代码改写如下:

result?= collection.update(condition, {‘$set‘: student})

这样可以只更新 student 字典内存在的字段,如果其原先还有其他字段则不会更新,也不会删除。而如果不用 $set 的话则会把之前的数据全部用 student 字典替换,如果原本存在其他的字段则会被删除。

另外 update() 方法其实也是官方不推荐使用的方法,在这里也分了 update_one() 方法和 update_many() 方法,用法更加严格,第二个参数需要使用 $ 类型操作符作为字典的键名,我们用示例感受一下。

condition = {‘name‘: ‘Kevin‘}
student = collection.find_one(condition)
student[‘age‘] = 26
result = collection.update_one(condition, {‘$set‘: student})
print(result)
print(result.matched_count, result.modified_count)

在这里调用了 update_one() 方法,第二个参数不能再直接传入修改后的字典,而是需要使用 {‘$set‘: student} 这样的形式,其返回结果是 UpdateResult 类型,然后调用 matched_count 和 modified_count 属性分别可以获得匹配的数据条数和影响的数据条数。

运行结果:

<pymongo.results.UpdateResult object at 0x10d17b678>
1 0

我们再看一个例子:

condition = {‘age‘: {‘$gt‘: 20}}
result = collection.update_one(condition, {‘$inc‘: {‘age‘: 1}})
print(result)
print(result.matched_count, result.modified_count)

在这里我们指定查询条件为年龄大于 20,然后更新条件为 {‘$inc‘: {‘age‘: 1}},也就是年龄加 1,执行之后会将第一条符合条件的数据年龄加 1。

运行结果:

<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1

可以看到匹配条数为 1 条,影响条数也为 1 条。

如果调用 update_many() 方法,则会将所有符合条件的数据都更新,示例如下:

condition = {‘age‘: {‘$gt‘: 20}}
result = collection.update_many(condition, {‘$inc‘: {‘age‘: 1}})
print(result)
print(result.matched_count, result.modified_count)

这时候匹配条数就不再为 1 条了,运行结果如下:

<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3

可以看到这时所有匹配到的数据都会被更新。

11. 删除

删除操作比较简单,直接调用 remove() 方法指定删除的条件即可,符合条件的所有数据均会被删除,示例如下:

result = collection.remove({‘name‘: ‘Kevin‘})
print(result)

运行结果:

{‘ok‘:?1,?‘n‘:?1}

另外依然存在两个新的推荐方法,delete_one() 和 delete_many() 方法,示例如下:

result = collection.delete_one({‘name‘: ‘Kevin‘})
print(result)
print(result.deleted_count)
result = collection.delete_many({‘age‘: {‘$lt‘: 25}})
print(result.deleted_count)

运行结果:

<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎

delete_one() 即删除第一条符合条件的数据,delete_many() 即删除所有符合条件的数据,返回结果是 DeleteResult 类型,可以调用 deleted_count 属性获取删除的数据条数。

12. 更多

另外 PyMongo 还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()、find_one_and_update(),就是查找后删除、替换、更新操作,用法与上述方法基本一致。

另外还可以对索引进行操作,如 create_index()、create_indexes()、drop_index() 等。

13. 结语

本节讲解了 PyMongo 操作 MongoDB 进行数据增删改查的方法,在后文我们会在实战案例中应用这些操作进行数据存储。

原文地址:https://blog.51cto.com/14445003/2426850

时间: 2025-01-02 05:09:44

Python3网络爬虫实战-33、数据存储:非关系型数据库存储:MongoDB的相关文章

Python3编写网络爬虫12-数据存储方式五-非关系型数据库存储

非关系型数据库存储 NoSQL 全称 Not Only SQL 意为非SQL 泛指非关系型数据库.基于键值对 不需要经过SQL层解析 数据之间没有耦合性 性能非常高. 非关系型数据库可细分如下: 键值存储数据库: 代表有Redis.Voldemort.和Oracle BDB等. 列存储数据库:代表有Cassandra.HBase.和Riak等. 文档型数据库:代表有CouchDB.Mongodb等. 图形数据库:代表有Neo4J.InfoGrid.Infinite.Graph等. 对于爬虫的数据

《Python3网络爬虫实战案例(崔庆才著)》 中文版PDF下载,附源代码+视频教程

<Python3网络爬虫实战案例(崔庆才著)>中文版PDF下载,附源代码+视频教程,带目录资料下载:https://pan.baidu.com/s/1OzxyHQMLOzWFMzjdQ8kEqQ 原文地址:http://blog.51cto.com/7369682/2330247

python爬虫11--文件存储之非关系型数据库存储MongoDB

NoSQL,Not Only SQL,不仅仅是SQL,泛指非关系型数据库,基于键值对的,不需要经过SQL层的解析,数据之间没有耦合性,性能高. 非关系型数据库细分如下: 键值存储数据库:Redis.Voldemort.Oracle BDB: 列表存储数据库:Cassandra.HBase.Riak: 文档型数据库:CouchDB.MongoDB: 图形数据库:Neo4j.InfoGrid.Infinite Graph. 爬虫数据使用非关系型数据库原因:简单高效.爬虫数据可能存在某些字段提取失败或

Python3网络爬虫实战-34、数据存储:非关系型数据库存储:Redis

Redis 是一个基于内存的高效的键值型非关系型数据库,存取效率极高,而且支持多种存储数据结构,使用也非常简单,在本节我们介绍一下 Python 的 Redis 操作,主要介绍 RedisPy 这个库的用法. 1. 准备工作 在本节开始之前请确保已经安装好了 Redis 及 RedisPy库,如果要做数据导入导出操作的话还需要安装 RedisDump,如没有安装可以参考第一章的安装说明. 2. Redis.StrictRedis RedisPy 库提供两个类 Redis 和 StrictRedi

Python3网络爬虫实战-32、数据存储:关系型数据库存储:MySQL

关系型数据库基于关系模型的数据库,而关系模型是通过二维表来保存的,所以它的存储方式就是行列组成的表,每一列是一个字段,每一行是一条记录.表可以看作是某个实体的集合,而实体之间存在联系,这就需要表与表之间的关联关系来体现,如主键外键的关联关系,多个表组成一个数据库,也就是关系型数据库. 关系型数据库有多种,如 SQLite.MySQL.Oracle.SQL Server.DB2等等. 在本节我们主要介绍 Python3 下 MySQL 的存储. 在 Python2 中,连接 MySQL 的库大多是

Python3网络爬虫实战-10、爬虫框架的安装:PySpider、Scrapy

我们直接用 Requests.Selenium 等库写爬虫,如果爬取量不是太大,速度要求不高,是完全可以满足需求的.但是写多了会发现其内部许多代码和组件是可以复用的,如果我们把这些组件抽离出来,将各个功能模块化,就慢慢会形成一个框架雏形,久而久之,爬虫框架就诞生了. 利用框架我们可以不用再去关心某些功能的具体实现,只需要去关心爬取逻辑即可.有了它们,可以大大简化代码量,而且架构也会变得清晰,爬取效率也会高许多.所以如果对爬虫有一定基础,上手框架是一种好的选择. 本书主要介绍的爬虫框架有PySpi

Python3网络爬虫实战-23、使用Urllib:分析Robots协议

利用 Urllib 的 robotparser 模块我们可以实现网站 Robots 协议的分析,本节我们来简单了解一下它的用法. 1. Robots协议 Robots 协议也被称作爬虫协议.机器人协议,它的全名叫做网络爬虫排除标准(Robots Exclusion Protocol),用来告诉爬虫和搜索引擎哪些页面可以抓取,哪些不可以抓取.它通常是一个叫做 robots.txt 的文本文件,放在网站的根目录下. 当搜索爬虫访问一个站点时,它首先会检查下这个站点根目录下是否存在 robots.tx

Python3网络爬虫实战-25、requests:高级用法

在前面一节我们了解了 Requests 的基本用法,如基本的 GET.POST 请求以及 Response 对象的用法,本节我们再来了解下 Requests 的一些高级用法,如文件上传,代理设置,Cookies 设置等等. 1. 文件上传 我们知道 Reqeuests 可以模拟提交一些数据,假如有的网站需要我们上传文件,我们同样可以利用它来上传,实现非常简单,实例如下: import requests files = {'file': open('favicon.ico', 'rb')} r =

Python3网络爬虫实战-4、存储库的安装:PyMySQL、PyMongo、RedisPy、Red

在前面一节我们介绍了几个数据库的安装方式,但这仅仅是用来存储数据的数据库,它们提供了存储服务,但如果想要和 Python 交互的话也同样需要安装一些 Python 存储库,如 MySQL 需要安装 PyMySQL,MongoDB 需要安装 PyMongo 等等,本节我们来说明一下这些库的安装方式. 1.4.1 PyMySQL的安装 在前面一节我们了解了 MySQL 的安装方式,在 Python3 中如果想要将数据存储到 MySQL 中就需要借助于 PyMySQL 来操作,本节我们介绍一下 PyM