NoSQL,全称 Not Only SQL,意为不仅仅是 SQL,泛指非关系型的数据库。NoSQL 是基于键值对的,而且不需要经过 SQL 层的解析,数据之间没有耦合性,性能非常高。
非关系型数据库又可以细分如下:
- 键值存储数据库,代表有 Redis, Voldemort, Oracle BDB 等。
- 列存储数据库,代表有 Cassandra, HBase, Riak 等。
- 文档型数据库,代表有 CouchDB, MongoDB 等。
- 图形数据库,代表有 Neo4J, InfoGrid, Infinite Graph等。
对于爬虫的数据存储来说,一条数据可能存在某些字段提取失败而缺失的情况,而且数据可能随时调整,另外数据之间能还存在嵌套关系。如果我们使用了关系型数据库存储,一是需要提前建表,二是如果存在数据嵌套关系的话需要进行序列化操作才可以存储,比较不方便。如果用了非关系数据库就可以避免一些麻烦,简单高效。
本节我们主要介绍一下 MongoDB 和 Redis 的数据存储操作。
MongoDB存储
MongoDB 是由 C++ 语言编写的非关系型数据库,是一个基于分布式文件存储的开源数据库系统,其内容存储形式类似 Json 对象,它的字段值可以包含其他文档,数组及文档数组,非常灵活,在这一节我们来看一下 Python3 下 MongoDB 的存储操作。
1. 准备工作
在本节开始之前请确保已经安装好了 MongoDB 并启动了其服务,另外安装好了 Python 的 PyMongo库,如没有安装可以参考第一章的安装过程。
2. 连接MongoDB
连接 MongoDB 我们需要使用 PyMongo 库里面的 MongoClient,一般来说传入 MongoDB 的 IP 及端口即可,第一个参数为地址 host,第二个参数为端口 port,端口如果不传默认是 27017。
import pymongo
client = pymongo.MongoClient(host=‘localhost‘, port=27017)
这样我们就可以创建一个 MongoDB 的连接对象了。
另外 MongoClient 的第一个参数 host 还可以直接传MongoDB 的连接字符串,以 mongodb 开头,例如:
client = MongoClient(‘mongodb://localhost:27017/‘)
可以达到同样的连接效果。
3. 指定数据库
MongoDB 中还分为一个个数据库,我们接下来的一步就是指定要操作哪个数据库,在这里我以 test 数据库为例进行说明,所以下一步我们需要在程序中指定要使用的数据库。
db?= client.test
调用 client 的 test 属性即可返回 test 数据库,当然也可以这样来指定:
db?= client[‘test‘]
两种方式是等价的。
4. 指定集合
MongoDB 的每个数据库又包含了许多集合 Collection,也就类似与关系型数据库中的表,下一步我们需要指定要操作的集合,在这里我们指定一个集合名称为 students,学生集合,还是和指定数据库类似,指定集合也有两种方式:
collection = db.students
collection = db[‘students‘]
这样我们便声明了一个 Collection 对象。
5. 插入数据
接下来我们便可以进行数据插入了,对于 students 这个Collection,我们新建一条学生数据,以字典的形式表示:
student = {
‘id‘: ‘20170101‘,
‘name‘: ‘Jordan‘,
‘age‘: 20,
‘gender‘: ‘male‘
}
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎
在这里我们指定了学生的学号、姓名、年龄和性别,然后接下来直接调用 collection 的 insert() 方法即可插入数据,代码如下:
result = collection.insert(student)
print(result)
在 MongoDB 中,每条数据其实都有一个 _id 属性来唯一标识,如果没有显式指明 _id,MongoDB 会自动产生一个 ObjectId 类型的 _id 属性。insert() 方法会在执行后返回的 _id 值。
运行结果:
5932a68615c2606814c91f3d
当然我们也可以同时插入多条数据,只需要以列表形式传递即可,示例如下:
student1 = {
‘id‘: ‘20170101‘,
‘name‘: ‘Jordan‘,
‘age‘: 20,
‘gender‘: ‘male‘
}
student2 = {
‘id‘: ‘20170202‘,
‘name‘: ‘Mike‘,
‘age‘: 21,
‘gender‘: ‘male‘
}
result = collection.insert([student1, student2])
print(result)
返回的结果是对应的 _id 的集合,运行结果:
[ObjectId(‘5932a80115c2606a59e8a048‘), ObjectId(‘5932a80115c2606a59e8a049‘)]
实际上在 PyMongo 3.X 版本中,insert() 方法官方已经不推荐使用了,当然继续使用也没有什么问题,官方推荐使用 insert_one() 和 insert_many() 方法将插入单条和多条记录分开。
student = {
‘id‘: ‘20170101‘,
‘name‘: ‘Jordan‘,
‘age‘: 20,
‘gender‘: ‘male‘
}
result = collection.insert_one(student)
print(result)
print(result.inserted_id)
运行结果:
<pymongo.results.InsertOneResult object at 0x10d68b558>
5932ab0f15c2606f0c1cf6c5
返回结果和 insert() 方法不同,这次返回的是InsertOneResult 对象,我们可以调用其 inserted_id 属性获取 _id。
对于 insert_many() 方法,我们可以将数据以列表形式传递即可,示例如下:
student1 = {
‘id‘: ‘20170101‘,
‘name‘: ‘Jordan‘,
‘age‘: 20,
‘gender‘: ‘male‘
}
student2 = {
‘id‘: ‘20170202‘,
‘name‘: ‘Mike‘,
‘age‘: 21,
‘gender‘: ‘male‘
}
result = collection.insert_many([student1, student2])
print(result)
print(result.inserted_ids)
insert_many() 方法返回的类型是 InsertManyResult,调用inserted_ids 属性可以获取插入数据的 _id 列表,运行结果:
<pymongo.results.InsertManyResult object at 0x101dea558>
[ObjectId(‘5932abf415c2607083d3b2ac‘), ObjectId(‘5932abf415c2607083d3b2ad‘)]
6. 查询
插入数据后我们可以利用 find_one() 或 find() 方法进行查询,find_one() 查询得到是单个结果,find() 则返回一个生成器对象。
result = collection.find_one({‘name‘: ‘Mike‘})
print(type(result))
print(result)
在这里我们查询 name 为 Mike 的数据,它的返回结果是字典类型,运行结果:
<class ‘dict‘>
{‘_id‘: ObjectId(‘5932a80115c2606a59e8a049‘), ‘id‘: ‘20170202‘, ‘name‘: ‘Mike‘, ‘age‘: 21, ‘gender‘: ‘male‘}
可以发现它多了一个 _id 属性,这就是 MongoDB 在插入的过程中自动添加的。
我们也可以直接根据 ObjectId 来查询,这里需要使用 bson 库里面的 ObjectId。
from bson.objectid import ObjectId
result = collection.find_one({‘_id‘: ObjectId(‘593278c115c2602667ec6bae‘)})
print(result)
其查询结果依然是字典类型,运行结果:
{‘_id‘:?ObjectId(‘593278c115c2602667ec6bae‘),?‘id‘:?‘20170101‘,?‘name‘:?‘Jordan‘,?‘age‘:?20,?‘gender‘:?‘male‘}
当然如果查询结果不存在则会返回 None。
对于多条数据的查询,我们可以使用 find() 方法,例如在这里查找年龄为 20 的数据,示例如下:
results = collection.find({‘age‘: 20})
print(results)
for result in results:
print(result)
运行结果:
<pymongo.cursor.Cursor object at 0x1032d5128>
{‘_id‘: ObjectId(‘593278c115c2602667ec6bae‘), ‘id‘: ‘20170101‘, ‘name‘: ‘Jordan‘, ‘age‘: 20, ‘gender‘: ‘male‘}
{‘_id‘: ObjectId(‘593278c815c2602678bb2b8d‘), ‘id‘: ‘20170102‘, ‘name‘: ‘Kevin‘, ‘age‘: 20, ‘gender‘: ‘male‘}
{‘_id‘: ObjectId(‘593278d815c260269d7645a8‘), ‘id‘: ‘20170103‘, ‘name‘: ‘Harden‘, ‘age‘: 20, ‘gender‘: ‘male‘}
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎
返回结果是 Cursor 类型,相当于一个生成器,我们需要遍历取到所有的结果,每一个结果都是字典类型。
如果要查询年龄大于 20 的数据,则写法如下:
results?= collection.find({‘age‘: {‘$gt‘:?20}})
在这里查询的条件键值已经不是单纯的数字了,而是一个字典,其键名为比较符号 $gt,意思是大于,键值为 20,这样便可以查询出所有年龄大于 20 的数据。
在这里将比较符号归纳如下表:
符号 | 含义 | 示例 |
---|---|---|
$lt | 小于 | {‘age‘: {‘$lt‘: 20}} |
$gt | 大于 | {‘age‘: {‘$gt‘: 20}} |
$lte | 小于等于 | {‘age‘: {‘$lte‘: 20}} |
$gte | 大于等于 | {‘age‘: {‘$gte‘: 20}} |
$ne | 不等于 | {‘age‘: {‘$ne‘: 20}} |
$in | 在范围内 | {‘age‘: {‘$in‘: [20, 23]}} |
$nin | 不在范围内 | {‘age‘: {‘$nin‘: [20, 23]}} |
另外还可以进行正则匹配查询,例如查询名字以 M 开头的学生数据,示例如下:
results?= collection.find({‘name‘: {‘$regex‘:?‘^M.*‘}})
在这里使用了 $regex 来指定正则匹配,^M.* 代表以 M 开头的正则表达式,这样就可以查询所有符合该正则的结果。
在这里将一些功能符号再归类如下:
符号 | 含义 | 示例 | 示例含义 |
---|---|---|---|
$regex | 匹配正则 | {‘name‘: {‘$regex‘: ‘^M.*‘}} | name 以 M开头 |
$exists | 属性是否存在 | {‘name‘: {‘$exists‘: True}} | name 属性存在 |
$type | 类型判断 | {‘age‘: {‘$type‘: ‘int‘}} | age 的类型为 int |
$mod | 数字模操作 | {‘age‘: {‘$mod‘: [5, 0]}} | 年龄模 5 余 0 |
$text | 文本查询 | {‘$text‘: {‘$search‘: ‘Mike‘}} | text 类型的属性中包含 Mike 字符串 |
$where | 高级条件查询 | {‘$where‘: ‘obj.fans_count == obj.follows_count‘} | 自身粉丝数等于关注数 |
这些操作的更详细用法在可以在 MongoDB 官方文档找到:?https://docs.mongodb.com/manu...。
7. 计数
要统计查询结果有多少条数据,可以调用 count() 方法,如统计所有数据条数:
count = collection.find().count()
print(count)
或者统计符合某个条件的数据:
count = collection.find({‘age‘: 20}).count()
print(count)
结果是一个数值,即符合条件的数据条数。
8. 排序
可以调用 sort() 方法,传入排序的字段及升降序标志即可,示例如下:
results = collection.find().sort(‘name‘, pymongo.ASCENDING)
print([result[‘name‘] for result in results])
运行结果:
[‘Harden‘, ‘Jordan‘, ‘Kevin‘, ‘Mark‘, ‘Mike‘]
在这里我们调用了 pymongo.ASCENDING 指定升序,如果要降序排列可以传入 pymongo.DESCENDING。
9. 偏移
在某些情况下我们可能想只取某几个元素,在这里可以利用skip() 方法偏移几个位置,比如偏移 2,就忽略前 2 个元素,得到第三个及以后的元素。
results = collection.find().sort(‘name‘, pymongo.ASCENDING).skip(2)
print([result[‘name‘] for result in results])
运行结果:
[‘Kevin‘, ‘Mark‘, ‘Mike‘]
另外还可以用 limit() 方法指定要取的结果个数,示例如下:
results = collection.find().sort(‘name‘, pymongo.ASCENDING).skip(2).limit(2)
print([result[‘name‘] for result in results])
运行结果:
[‘Kevin‘, ‘Mark‘]
如果不加 limit() 原本会返回三个结果,加了限制之后,会截取 2 个结果返回。
值得注意的是,在数据库数量非常庞大的时候,如千万、亿级别,最好不要使用大的偏移量来查询数据,很可能会导致内存溢出,可以使用类似如下操作来进行查询:
from bson.objectid import ObjectId
collection.find({‘_id‘: {‘$gt‘: ObjectId(‘593278c815c2602678bb2b8d‘)}})
这时记录好上次查询的 _id。
10. 更新
对于数据更新可以使用 update() 方法,指定更新的条件和更新后的数据即可,例如:
condition = {‘name‘: ‘Kevin‘}
student = collection.find_one(condition)
student[‘age‘] = 25
result = collection.update(condition, student)
print(result)
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎
在这里我们将 name 为 Kevin 的数据的年龄进行更新,首先指定查询条件,然后将数据查询出来,修改年龄,之后调用 update() 方法将原条件和修改后的数据传入,即可完成数据的更新。
运行结果:
{‘ok‘:?1,?‘nModified‘:?1,?‘n‘:?1,?‘updatedExisting‘:?True}
返回结果是字典形式,ok 即代表执行成功,nModified 代表影响的数据条数。
另外我们也可以使用 $set 操作符对数据进行更新,代码改写如下:
result?= collection.update(condition, {‘$set‘: student})
这样可以只更新 student 字典内存在的字段,如果其原先还有其他字段则不会更新,也不会删除。而如果不用 $set 的话则会把之前的数据全部用 student 字典替换,如果原本存在其他的字段则会被删除。
另外 update() 方法其实也是官方不推荐使用的方法,在这里也分了 update_one() 方法和 update_many() 方法,用法更加严格,第二个参数需要使用 $ 类型操作符作为字典的键名,我们用示例感受一下。
condition = {‘name‘: ‘Kevin‘}
student = collection.find_one(condition)
student[‘age‘] = 26
result = collection.update_one(condition, {‘$set‘: student})
print(result)
print(result.matched_count, result.modified_count)
在这里调用了 update_one() 方法,第二个参数不能再直接传入修改后的字典,而是需要使用 {‘$set‘: student} 这样的形式,其返回结果是 UpdateResult 类型,然后调用 matched_count 和 modified_count 属性分别可以获得匹配的数据条数和影响的数据条数。
运行结果:
<pymongo.results.UpdateResult object at 0x10d17b678>
1 0
我们再看一个例子:
condition = {‘age‘: {‘$gt‘: 20}}
result = collection.update_one(condition, {‘$inc‘: {‘age‘: 1}})
print(result)
print(result.matched_count, result.modified_count)
在这里我们指定查询条件为年龄大于 20,然后更新条件为 {‘$inc‘: {‘age‘: 1}},也就是年龄加 1,执行之后会将第一条符合条件的数据年龄加 1。
运行结果:
<pymongo.results.UpdateResult object at 0x10b8874c8>
1 1
可以看到匹配条数为 1 条,影响条数也为 1 条。
如果调用 update_many() 方法,则会将所有符合条件的数据都更新,示例如下:
condition = {‘age‘: {‘$gt‘: 20}}
result = collection.update_many(condition, {‘$inc‘: {‘age‘: 1}})
print(result)
print(result.matched_count, result.modified_count)
这时候匹配条数就不再为 1 条了,运行结果如下:
<pymongo.results.UpdateResult object at 0x10c6384c8>
3 3
可以看到这时所有匹配到的数据都会被更新。
11. 删除
删除操作比较简单,直接调用 remove() 方法指定删除的条件即可,符合条件的所有数据均会被删除,示例如下:
result = collection.remove({‘name‘: ‘Kevin‘})
print(result)
运行结果:
{‘ok‘:?1,?‘n‘:?1}
另外依然存在两个新的推荐方法,delete_one() 和 delete_many() 方法,示例如下:
result = collection.delete_one({‘name‘: ‘Kevin‘})
print(result)
print(result.deleted_count)
result = collection.delete_many({‘age‘: {‘$lt‘: 25}})
print(result.deleted_count)
运行结果:
<pymongo.results.DeleteResult object at 0x10e6ba4c8>
1
4
Python资源分享qun 784758214 ,内有安装包,PDF,学习视频,这里是Python学习者的聚集地,零基础,进阶,都欢迎
delete_one() 即删除第一条符合条件的数据,delete_many() 即删除所有符合条件的数据,返回结果是 DeleteResult 类型,可以调用 deleted_count 属性获取删除的数据条数。
12. 更多
另外 PyMongo 还提供了一些组合方法,如find_one_and_delete()、find_one_and_replace()、find_one_and_update(),就是查找后删除、替换、更新操作,用法与上述方法基本一致。
另外还可以对索引进行操作,如 create_index()、create_indexes()、drop_index() 等。
13. 结语
本节讲解了 PyMongo 操作 MongoDB 进行数据增删改查的方法,在后文我们会在实战案例中应用这些操作进行数据存储。
原文地址:https://blog.51cto.com/14445003/2426850