动态规划(Dynamic Programming)LeetCode经典题目

动态规划(DP)概述:

动态规划是运筹学的一个分支。(运筹学,是现代管理学的一门重要专业基础课。该学科利用统计学、数学模型和算法等方法,去寻找复杂问题中的最佳或近似最佳的解答。)

以局部最优解最终求得全局最优解。在设计动态规划算法时,需要确认原问题与子问题、动态规划状态、边界状态结值、状态转移方程等关键要素。

在算法面试中,动态规划是最常考察的题型之一,大多数面试官都以是否可较好地解决动态规划相关问题来区分候选者是否“聪明”。

下面就让我们开始8道经典的动态规划相关题目吧!!

1、LeetCode70 爬楼梯

2、LeetCode198 打家劫舍

3、LeetCode53 最大子序和

4、LeetCode322 找零钱

5、LeetCode120 三角形

6、LeetCode300 最长上升子序列

7、LeetCode64 最小路径和

8、LeetCode174 地下城游戏

(题解稍后会在博客随笔分类“动态规划”中一一给出,耐心等待哦!!)

欢迎评论,共同进步!!

 

原文地址:https://www.cnblogs.com/hengzhezou/p/11041773.html

时间: 2024-11-07 14:09:26

动态规划(Dynamic Programming)LeetCode经典题目的相关文章

算法应用公式(二)动态规划 Dynamic Programming

动态规划在计算机中是一个比较玄学的算法,有的人可能看很久都很疑惑这到底是怎么回事,但是一旦理解了,上手就非常容易了. 算法描述 (以下内容来自百度百科)动态规划(dynamic programming)是运筹学的一个分支,是求解决策过程(decision process)最优化的数学方法.20世纪50年代初美国数学家R.E.Bellman等人在研究多阶段决策过程(multistep decision process)的优化问题时,提出了著名的最优化原理(principle of optimali

动态规划 Dynamic Programming

March 26, 2013 作者:Hawstein 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处. 前言 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的

优化问题 Optimization Problems & 动态规划 Dynamic Programming

2018-01-12 22:50:06 一.优化问题 优化问题用数学的角度来分析就是去求一个函数或者说方程的极大值或者极小值,通常这种优化问题是有约束条件的,所以也被称为约束优化问题. 约束优化问题(亦译为受约束的最优化问题)是一类数学最优化问题,它由目标函数以及与目标函数中的变量相关的约束条件两部分组成,优化过程则为在约束条件下最优化(最大化或最小化)目标函数. 经典的优化问题: 最短路问题 旅行商问题(TSP) 装箱问题 调度问题 背包问题 了解并熟练掌握这些经典的优化问题会对以后遇到的新的

Dynamic Programming - leetcode [动态规划]

115. Distinct Subsequences 96. Unique Binary Search Trees

动态规划-Dynamic Programming(DP)

动态规划 动态规划方法心得 ? 动态规划是一般的面试.笔试中的高频算法题,熟练掌握必要的.动态规划的中心思想是在解决当前问题时,可以由之前已经计算所得的结果并结合现在的限制条件递推出结果.由于此前的计算结果已经保留下来,所以极大的缩短了时间复杂度. ? 解决动态规划问题的关键是找出状态表达式,即如何由之前的结果推导出现在的结果.另外,有的问题有很多限制条件增加问题的难度,需要剥丝抽茧,将问题解决.在找到状态表达式后,分为三步解决问题: 一. 定义内存空间,用来保存每步结果,并根据题目初始化,有些

[LeetCode] questions for Dynamic Programming

Questions: [LeetCode] 198. House Robber _Easy tag: Dynamic Programming [LeetCode] 221. Maximal Square _ Medium Tag: Dynamic Programming [LeetCode] 62. Unique Paths_ Medium tag: Dynamic Programming [LeetCode] 64. Minimum Path Sum_Medium tag: Dynamic P

[leetcode]53Maximum Subarray动态规划经典题目:最大子串问题

/** * Find the contiguous subarray within an array (containing at least one number) * which has the largest sum. For example, given the array [-2,1,-3,4,-1,2,1,-5,4], the contiguous subarray [4,-1,2,1] has the largest sum = 6. click to show more prac

Dynamic programming:from novice to advanced【动态规划】

动态规划:从新手到专家 出处:http://hawstein.com/posts/dp-novice-to-advanced.html 声明:本文采用以下协议进行授权: 自由转载-非商用-非衍生-保持署名|Creative Commons BY-NC-ND 3.0 ,转载请注明作者及出处. 前言 本文翻译自TopCoder上的一篇文章: Dynamic Programming: From novice to advanced ,并非严格逐字逐句翻译,其中加入了自己的一些理解.水平有限,还望指摘.

动态规划算法(Dynamic Programming,简称 DP)

动态规划算法(Dynamic Programming,简称 DP)似乎是一种很高深莫测的算法,你会在一些面试或算法书籍的高级技巧部分看到相关内容,什么状态转移方程,重叠子问题,最优子结构等高大上的词汇也可能让你望而却步. 而且,当你去看用动态规划解决某个问题的代码时,你会觉得这样解决问题竟然如此巧妙,但却难以理解,你可能惊讶于人家是怎么想到这种解法的. 实际上,动态规划是一种常见的「算法设计技巧」,并没有什么高深莫测,至于各种高大上的术语,那是吓唬别人用的,只要你亲自体验几把,这些名词的含义其实