HDU - 1045 Fire Net (二分图最大匹配-匈牙利算法)

(点击此处查看原题)

匈牙利算法简介

个人认为这个算法是一种贪心+暴力的算法,对于二分图的两部X和Y,记x为X部一点,y为Y部一点,我们枚举X的每个点x,如果Y部存在匹配的点y并且y没有被其他的x匹配,那就直接匹配;如果Y中已经没有可以和x匹配的点(包括可以匹配的点已经被其他的x匹配),那就让已经匹配的y的原配x‘寻找其他可以匹配的y’,并将y和x匹配,最后,统计出匹配的对数

(详细了解的话,可以看看这位的博客:https://blog.csdn.net/sunny_hun/article/details/80627351

题意

在一个n*n的网格中,存在一些墙壁,用‘X‘表示,我们需要摆放blockhouse,由于每个blockhouse会向四周发射子弹,所以任意两个blockhouse不能在一条直线上,除非他们之间有墙壁分隔,问在给定的网格中,最多可以摆放多少个blockhouse

解题思路

(一开始我想用深搜暴力写的,过了样例,但是WA了,觉得自己的暴力写法没什么问题的,但是一直过不了,就只能放弃暴力了)

注意到如果我们在每个点放置了blockhouse,那么这个blockhouse向四个方向延申至墙壁或者边界,这个blockhouse可以视作是由一段连续的横区间和纵区间的交点,如下图所示:

因此,我们发现,连续的纵横区间的交点形成一个blockhouse,并使得这两个区间都无法放置其他的blockhouse,由此看出这是一个求二分图最大匹配的问题

我们将连续的纵区间当作一个点,作为X部,将练习的横区间当作一个点,作为Y部,对于相交的横纵区间,我们由纵区间代表的点向横坐标代表的点建边,构建二分图

随后我们可以通过将二分图转化使用最大流求解,也可以用匈牙利算法求解,由于Dinic算法代码量冗长,这里就采用了匈牙利算法求解

代码区

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<queue>
#include<string>
#include<fstream>
#include<vector>
#include<stack>
#include <map>
#include <iomanip>

#define bug cout << "**********" << endl
#define show(x, y) cout<<"["<<x<<","<<y<<"] "
#define LOCAL = 1;
using namespace std;
typedef long long ll;
const int inf = 1e7 + 10;
const ll mod = 1e9 + 7;
const int Max = 1e6 + 10;
const int Max2 = 3e2 + 10;

int n;
char mp[5][5];
int row_id[5][5], col_id[5][5], cnt_row, cnt_col;    //记录每个点所处的行、列编号
bool edge[20][20], vis[20];                            //代表是否配对以及是否已经占用
int match[20];

bool dfs(int x)
{
    for (int i = 0; i < cnt_col; i++)
    {
        if (edge[x][i] && !vis[i])
            //used表示曾试图改变i的匹配对象,但是没有成功的话(used[i]= true),所以就无需继续
        {
            vis[i] = true;
            if (match[i] == -1 || dfs(match[i]))    //i没有匹配对象,或者i原来的匹配对象还可以和其他的匹配
            {
                match[i] = x;
                return true;
            }
        }
    }
    return false;
}

int solve()
{
    int res = 0;
    memset(match, -1, sizeof(match));
    for (int i = 0; i < cnt_row; i++)
    {
        memset(vis, 0, sizeof(vis));
        if (dfs(i))
            res++;
    }
    return res;
}

int main()
{
#ifdef LOCAL
    //    freopen("input.txt", "r", stdin);
    //    freopen("output.txt", "w", stdout);
#endif
    while (scanf("%d", &n) != EOF && n)
    {
        cnt_row = cnt_col = 0;
        memset(edge, 0, sizeof(edge));

        for (int i = 1; i <= n; i++)
        {
            scanf("%s", mp[i] + 1);
        }

        for (int i = 1; i <= n; i++)
        {
            for (int j = 1; j <= n; j++)
            {
                if (mp[i][j] == ‘.‘)
                {
                    int u = 0, v = 0;
                    if (j == 1 || mp[i][j - 1] == ‘X‘)
                        u = cnt_row++;
                    else
                        u = row_id[i][j - 1];

                    if (i == 1 || mp[i - 1][j] == ‘X‘)
                        v = cnt_col++;
                    else
                        v = col_id[i - 1][j];

                    edge[u][v] = true;

                    row_id[i][j] = u;
                    col_id[i][j] = v;
                }
            }
        }
        printf("%d\n", solve());
    }
    return 0;
}

原文地址:https://www.cnblogs.com/winter-bamboo/p/11438067.html

时间: 2024-11-06 11:32:32

HDU - 1045 Fire Net (二分图最大匹配-匈牙利算法)的相关文章

POJ1274:The Perfect Stall(二分图最大匹配 匈牙利算法)

The Perfect Stall Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 17895   Accepted: 8143 Description Farmer John completed his new barn just last week, complete with all the latest milking technology. Unfortunately, due to engineering pr

Ural1109_Conference(二分图最大匹配/匈牙利算法/网络最大流)

解题报告 二分图第一题. 题目描述: 为了参加即将召开的会议,A国派出M位代表,B国派出N位代表,(N,M<=1000) 会议召开前,选出K队代表,每对代表必须一个是A国的,一个是B国的; 要求每一个代表要与另一方的一个代表联系,除了可以直接联系,也可以电话联系,求电话联系最少 思路: 电话联系最少就要使直接联系最大,又是一一匹配关系,就是二分图的最大匹配. 下面是匈牙利算法. #include <cstdio> #include <cstring> #include <

UESTC 919 SOUND OF DESTINY --二分图最大匹配+匈牙利算法

二分图最大匹配的匈牙利算法模板题. 由题目易知,需求二分图的最大匹配数,采取匈牙利算法,并采用邻接表来存储边,用邻接矩阵会超时,因为邻接表复杂度O(nm),而邻接矩阵最坏情况下复杂度可达O(n^3). 代码: #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> u

hdu 2063 过山车 (最大匹配 匈牙利算法模板)

匈牙利算法是由匈牙利数学家Edmonds于1965年提出,因而得名.匈牙利算法是基于Hall定理中充分性证明的思想,它是部图匹配最常见的算法,该算法的核心就是寻找增广路径,它是一种用增广路径求二分图最大匹配的算法. 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2063 题目大意: 中文题目,点进去马上知道. 解题思路: 这道题目就是求最大匹配数目,直接套用匈牙利算法模板,这个算法大概原则就是:有机会上,没有机会创造机会也要上. 代码: 1 #i

HDU 1045——Fire Net——————【最大匹配、构图、邻接矩阵做法】

Fire Net Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice HDU 1045 Description Suppose that we have a square city with straight streets. A map of a city is a square board with n rows and n columns, e

二分图最大匹配——匈牙利算法

这篇文章讲无权二分图(unweighted bipartite graph)的最大匹配(maximum matching)和完美匹配(perfect matching),以及用于求解匹配的匈牙利算法(Hungarian Algorithm):不讲带权二分图的最佳匹配. 二分图:简单来说,如果图中点可以被分为两组,并且使得所有边都跨越组的边界,则这就是一个二分图.准确地说:把一个图的顶点划分为两个不相交集 U  和 V ,使得每一条边都分别连接U . V  中的顶点.如果存在这样的划分,则此图为一

poj - 3041 Asteroids (二分图最大匹配+匈牙利算法)

http://poj.org/problem?id=3041 在n*n的网格中有K颗小行星,小行星i的位置是(Ri,Ci),现在有一个强有力的武器能够用一发光速将一整行或一整列的小行星轰为灰烬,想要利用这个武器摧毁所有的小行星最少需要几发光束. 主要是构图,将每一行当成一个点,构成集合1,每一列也当成一个点,构成集合2,每一个障碍物的位置坐标将集合1和集合2的点连接起来,也就是将每一个障碍物作为连接节点的边,这样可以得出本题是一个最小点覆盖的问题==二分图的最大匹配. 就可以通过匈牙利算法求解.

二分图最大匹配---匈牙利算法BFS 实现

二分图指的是这样一种图,其所有顶点可以分成两个集合X和Y,其中X或Y中任意两个在同一集合中的点都不相连,所有的边关联在两个顶点中,恰好一个属于集合X,另一个属于集合Y.给定一个二分图G,M为G边集的一个子集,如果M满足当中的任意两条边都不依附于同一个顶点,则称M是一个匹配.图中包含边数最多的匹配称为图的最大匹配. 二分图的最大匹配有两种求法,第一种是最大流:第二种就是我现在要讲的匈牙利算法.这个算法说白了就是最大流的算法,但是它跟据二分图匹配这个问题的特点,把最大流算法做了简化,提高了效率. 增

51Nod 2006 飞行员配对(二分图最大匹配)-匈牙利算法

2006 飞行员配对(二分图最大匹配) 题目来源: 网络流24题 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 第二次世界大战时期,英国皇家空军从沦陷国征募了大量外籍飞行员.由皇家空军派出的每一架飞机都需要配备在航行技能和语言上能互相配合的2名飞行员,其中1名是英国飞行员,另1名是外籍飞行员.在众多的飞行员中,每一名外籍飞行员都可以与其他若干名英国飞行员很好地配合.如何选择配对飞行的飞行员才能使一次派出最多的飞机.对于给定的外籍飞行员与英国飞行员的