目标检测: R-CNN原理

论文地址:

1 selective search:    https://arxiv.org/pdf/1502.05082.pdf

2  r-cnn:                    https://arxiv.org/pdf/1311.2524.pdf

1 概述:
为了降低滑动窗口导致的时间消耗, 采用selective search 方法来定位含有目标的候选框, 大约2k个, 然后再原图上按照这2k个框去切出来, 依次进行CNN训练

[selective search]解释: 预先找出图中目标可能出现的位置,即候选区域(Region Proposal)。利用图像中的纹理、边缘、颜色等信息,可以保证在选取较少窗口(几千甚至几百)的情况下保持较高的召回率(Recall)

2 步骤:
2.1 在imagenet上预训练一个分类CNN
2.2 使用selective search方法切出图像上所有图片
2.3 将切出来的图片resize到统一尺寸
2.4 采用预训练出来的CNN进行fine-tune, 总输出类别为N+1, 1表示背景, 此时需要用较小的lr, 训练好保存此CNN
2.5 去掉2.4步训练出来的CNN的最后一个分类层, 将中间的一维特征向量作为输出, 将每一个候选区域图片经过此CNN, 输出特征向量存储到磁盘
2.5 将特征向量作为输入样本, 依次为每一个类别训练一个SVM(正例为候选区域和真实区域的IoU>=0.3的候选区域, 其他作为负例)
2.6 使用回归损失训练目标的box的位置参数

box回归损失解释:

假设预测模型输出di(p), 其中p=(px,py,pw,ph)为候选区域的中心点坐标宽高, g=(gx,gy,gw,gh)为真实目标的中心点坐标宽高

1 其中L2正则化超参的值是交叉验证确定的.

2 只有IoU>=0.6的候选区域才参与计算回归损失

3 缺点
3.1 selective search过程很慢
3.2 2k个区域里有很大重复, 信息冗余
3.3 4个模块(selective search, CNN, SVM, Regression)各自分离

原文地址:https://www.cnblogs.com/dxscode/p/11443374.html

时间: 2024-10-31 20:21:38

目标检测: R-CNN原理的相关文章

深度学习之目标检测常用算法原理+实践精讲

第1章 课程介绍本章节主要介绍课程的主要内容.核心知识点.课程涉及到的应用案例.深度学习算法设计通用流程.适应人群.学习本门课程的前置条件.学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络. 第2章 目标检测算法基础介绍本章节主要介绍目标检测算法的基本概念.传统的目标检测算法.目前深度学习目标检测主流方法(one-stage.two-stage.多任务网络).相关算法的基本流程.算法性能的评价指标.不同算法的优缺点和性能比较等,并结合实际的应用场景和案例来介绍目标检测算法的重要性和实用

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络

深度学习之目标检测常用算法原理+实践精讲 YOLO / Faster RCNN / SSD / 文本检测 / 多任务网络 资源获取链接:点击这里 第1章 课程介绍 本章节主要介绍课程的主要内容.核心知识点.课程涉及到的应用案例.深度学习算法设计通用流程.适应人群.学习本门课程的前置条件.学习后达到的效果等,帮助大家从整体上了解本门课程的整体脉络. 1-1 课程导学 第2章 目标检测算法基础介绍 本章节主要介绍目标检测算法的基本概念.传统的目标检测算法.目前深度学习目标检测主流方法(one-sta

YOLOv3目标检测:原理与Darknet源码解析

Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. (冗谈不够,放码过来!). 代码阅读是从入门到提高的必由之路.尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新. YOLOv3是一种基于深度学习的端到端实时目标检测方法,以速度快见长. YOLOv3的实现Darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让

【CNN调参】目标检测算法优化技巧

上次bbuf分享了亚马逊团队的用于分类模型的bag of tricks, 详见:链接, 本文继续梳理一下目标检测trick, 解读这篇19年同样由亚马逊团队发表的<Bag of Freebies for Training Object Detection Neural Networks>.先来看看效果,在使用了trick后,Faster R-CNN能提高1-2个百分点,而YOLOv3则提高了5个百分点. 1. 简介 目标检测模型相比于分类模型的研究相比,更缺少普遍性,并且网络结构和优化目标更加

基于深度学习的目标检测

普通的深度学习监督算法主要是用来做分类,如图1(1)所示,分类的目标是要识别出图中所示是一只猫.而在ILSVRC(ImageNet Large Scale Visual Recognition Challenge)竞赛以及实际的应用中,还包括目标定位和目标检测等任务.其中目标定位是不仅仅要识别出来是什么物体(即分类),而且还要预测物体的位置,位置一般用边框(bounding box)标记,如图1(2)所示.而目标检测实质是多目标的定位,即要在图片中定位多个目标物体,包括分类和定位.比如对图1(3

使用Caffe完成图像目标检测 和 caffe 全卷积网络

一.[用Python学习Caffe]2. 使用Caffe完成图像目标检测 标签: pythoncaffe深度学习目标检测ssd 2017-06-22 22:08 207人阅读 评论(0) 收藏 举报  分类: 机器学习(22)  深度学习(12)  版权声明:本文为博主原创文章,未经博主允许不得转载. 目录(?)[+] 2. 使用Caffe完成图像目标检测 本节将以一个快速的图像目标检测网络SSD作为例子,通过Python Caffe来进行图像目标检测. 必须安装windows-ssd版本的Ca

目标检测综述

这篇综述是我统计信号处理的作业,在这里分享一下,将介绍计算机视觉中的目标检测任务,论述自深度学习以来目标检测的常见方法,着重讲yolo算法,并且将yolo算法与其他的one-stage以及two-stage方法进行比较. 目录 1.介绍 2.YOLO 2.1 YOLOv1 2.2 YOLOv2 2.3 YOLOv3 3.其他方法 RCNN FastRCNN FasterRCNN SSD RetinaNet 4.实验结果比较 5.总结 参考文献 1. 介绍 目标检测在现实中的应用很广泛,我们需要检

4. 基于深度学习的目标检测算法的综述(转)

4. 基于深度学习的目标检测算法的综述(转) 原文链接:https://www.cnblogs.com/zyly/p/9250195.html 目录 一 相关研究 1.选择性搜索(Selective Search) 2.OverFeat 二.基于区域提名的方法 1.R-CNN 2.SPP-Net 3.Fast R-CNN 4.Faster R-CNN 5.R-FCN 三 端对端的方法 1.YOLO 2.SSD 四 总结 在前面几节中,我们已经介绍了什么是目标检测,以及如何进行目标检测,还提及了滑

【目标检测】Faster RCNN算法详解

Ren, Shaoqing, et al. "Faster R-CNN: Towards real-time object detection with region proposal networks." Advances in Neural Information Processing Systems. 2015. 本文是继RCNN[1],fast RCNN[2]之后,目标检测界的领军人物Ross Girshick团队在2015年的又一力作.简单网络目标检测速度达到17fps,在P

CS231n第八课:目标检测定位学习记录

结合视频第八集和笔记:http://chuansong.me/n/353443351445 本节课程从分类(Classification),定位(Localization)和检测(Detection)三个方面入手. 从上图可以直观的看到: 1.对于分类而言,就是对于给定的图片把其划分到给定的几种类别中某一种.很显然,图像中只能存在一种给定类别中的对象. 2.而定位就是找到对应的对象的位置区域,把它框选出来(即Bounding Box),这个选框除了位置信息(x,y)外还要包含其大小信息(w,h)