内存管理算法--Buddy伙伴算法【转】

转自:http://blog.csdn.net/orange_os/article/details/7392986

Buddy算法的优缺点:

1)尽管伙伴内存算法在内存碎片问题上已经做的相当出色,但是该算法中,一个很小的块往往会阻碍一个大块的合并,一个系统中,对内存块的分配,大小是随机的,一片内存中仅一个小的内存块没有释放,旁边两个大的就不能合并。

2)算法中有一定的浪费现象,伙伴算法是按2的幂次方大小进行分配内存块,当然这样做是有原因的,即为了避免把大的内存块拆的太碎,更重要的是使分配和释放过程迅速。但是他也带来了不利的一面,如果所需内存大小不是2的幂次方,就会有部分页面浪费。有时还很严重。比如原来是1024个块,申请了16个块,再申请600个块就申请不到了,因为已经被分割了。

3)另外拆分和合并涉及到 较多的链表和位图操作,开销还是比较大的。

Buddy(伙伴的定义):

这里给出伙伴的概念,满足以下三个条件的称为伙伴:
1)两个块大小相同;
2)两个块地址连续;
3)两个块必须是同一个大块中分离出来的;

Buddy算法的分配原理:

假如系统需要4(2*2)个页面大小的内存块,该算法就到free_area[2]中查找,如果链表中有空闲块,就直接从中摘下并分配出去。如果没有,算法将顺着数组向上查找free_area[3],如果free_area[3]中有空闲块,则将其从链表中摘下,分成等大小的两部分,前四个页面作为一个块插入free_area[2],后4个页面分配出去,free_area[3]中也没有,就再向上查找,如果free_area[4]中有,就将这16(2*2*2*2)个页面等分成两份,前一半挂如free_area[3]的链表头部,后一半的8个页等分成两等分,前一半挂free_area[2]
的链表中,后一半分配出去。假如free_area[4]也没有,则重复上面的过程,知道到达free_area数组的最后,如果还没有则放弃分配。

Buddy算法的释放原理:

内存的释放是分配的逆过程,也可以看作是伙伴的合并过程。当释放一个块时,先在其对应的链表中考查是否有伙伴存在,如果没有伙伴块,就直接把要释放的块挂入链表头;如果有,则从链表中摘下伙伴,合并成一个大块,然后继续考察合并后的块在更大一级链表中是否有伙伴存在,直到不能合并或者已经合并到了最大的块(2*2*2*2*2*2*2*2*2个页面)。

整个过程中,位图扮演了重要的角色,如图2所示,位图的某一位对应两个互为伙伴的块,为1表示其中一块已经分配出去了,为0表示两块都空闲。伙伴中无论是分配还是释放都只是相对的位图进行异或操作。分配内存时对位图的
是为释放过程服务,释放过程根据位图判断伙伴是否存在,如果对相应位的异或操作得1,则没有伙伴可以合并,如果异或操作得0,就进行合并,并且继续按这种方式合并伙伴,直到不能合并为止。

Buddy内存管理的实现:

提到buddy 就会想起linux 下的物理内存的管理 ,这里的memory pool 上实现的 buddy 系统

和linux 上按page 实现的buddy系统有所不同的是,他是按照字节的2的n次方来做block的size

实现的机制中主要的结构如下:

整个buddy 系统的结构:

struct mem_pool_table

{

#define MEM_POOL_TABLE_INIT_COOKIE (0x62756479)

uint32 initialized_cookie;
/* Cookie 指示内存已经被初始化后的魔数,  如果已经初始化设置为0x62756479*/

uint8 *mem_pool_ptr;/* 指向内存池的地址*/

uint32 mem_pool_size;
/* 整个pool 的size,下面是整个max block size 的大小*/

uint32 max_block_size;
/* 必须是2的n次方,表示池中最大块的大小*/   
boolean assert_on_empty;
/* 如果该值被设置成TRUE,内存分配请求没有完成就返回 并输出出错信息*/
 uint32 mem_remaining;
/* 当前内存池中剩余内存字节数*/                                              
uint32 max_free_list_index;
/* 最大freelist 的下标,*/
struct mem_free_hdr_type     *free_lists[MAX_LEVELS];/* 这个就是伙伴系统的level数组*/

#ifdef FEATURE_MEM_CHECK
uint32 max_block_requested;
  uint32 min_free_mem;
/* 放mem_remaining
*/
#endif /* FEATURE_ONCRPC_MEM_CHECK*/
};

这个结构是包含在free node 或alloc node 中的结构:

其中check 和 fill 都被设置为某个pattern
用来检查该node 的合法性
#define MEM_HDR_CHECK_PATTERN ((uint16)0x3CA4)
#define MEM_HDR_FILL_PATTERN ((uint8)0x5C)

typedef struct  tagBuddyMemBlockHeadType

{

mem_pool_type pool;
/*回指向内存池*/

uint16 check;

uint8 state; /* bits 0-3 放该node 属于那1级 bit 7 如果置1,表示已经分配(not
free)

uint8 fill;

} BUDDY_MEM_BLOCK_HEAD_TYPE;

这个结构就是包含node 类型结构的 free header 的结构:

typedef struct  tagBuddyMemHeadType

{

mem_node_hdr_type hdr;

struct mem_free_hdr_type * pNext;   /* next,prev,用于连接free header的双向 list*/

struct mem_free_hdr_type * pPrev;

} mem_free_hdr_type;

这个结构就是包含node 类型结构的 alloc header 的结构:
已分配的mem 的node 在内存中就是这样表示的

  1. typedef struct mem_alloc_hdr_type
  2. {
  3. mem_node_hdr_type hdr;
  4. #ifdef FEATURE_MEM_CHECK_OVERWRITE
  5. uint32     in_use_size;
  6. #endif
  7. } mem_alloc_hdr_type;

其中用in_use_size 来表示如果请求分配的size 所属的level上实际用了多少
比如申请size=2000bytes, 按size to level 应该是2048,实际in_use_size
为2000,剩下48byte 全部填充为某一数值,然后在以后free 是可以check
是否有overwite 到着48byte 中的数值,一般为了速度,只 检查8到16byte

另外为什么不把这剩下的48byte 放到freelist 中其他level 中呢,这个可能
因为本来buddy 系统的缺点就是容易产生碎片,这样的话就更碎了

关于free or alloc node 的示意图:

假设

最小块为2^4=16,着是由mem_alloc_hdr_type (12byte)决定的, 实际可分配4byte

如果假定最大max_block_size =1024,

如果pool 有mem_free_hdr_type[0]上挂了两个1024的block node

上图是free node, 下图紫色为alloc node

接下来主要是buddy 系统的操作主要包括pool init , mem alloc ,mem free

pool init :
 1. 将实际pool 的大小去掉mem_pool_table 结构大小后的size 放到
     mem_pool_size, 并且修改实际mem_pool_ptr指向前进mem_pool_table
     结构大小的地址
 2.  接下来主要将mem_pool_size 大小的内存,按最大块挂到free_lists 上
    level 为0的list 上,然后小于该level block size 部分,继续挂大下一
    级,循环到全部处理完成  (感觉实际用于pool的size ,应该为减去
    mem_pool_table 的大小,然后和最大块的size 对齐,这样比较好,
    但没有实际测试过)
   
   
mem alloc:
    这部分相当简单,先根据请求mem的size ,实际分配时需要加上mem_alloc_hdr_type
这12byte ,然后根据调整后的size,计算实际应该在那个 level上分配,如果有相应级
很简单,直接返回,如果没有,一级一级循环查找,找到后,把省下的部分,在往下一级
一级插入到对应级的freelist 上

mem free:
     其中free 的地址,减去12 就可以获得mem_alloc_hdr_type 结构
     然后确定buddy 在该被free block 前,还是后面, 然后合并buddy,
     循环寻找上一级的buddy ,有就再合并,只到最大block size 那级

关于这个算法,在<<The Art  of Computer Programming>> vol 1,的
动态存储分配中有描述,对于那些只有OSAL 的小系统,该算法相当有用

原文地址:https://www.cnblogs.com/sky-heaven/p/8267338.html

时间: 2024-08-28 17:51:09

内存管理算法--Buddy伙伴算法【转】的相关文章

内存管理算法--Buddy伙伴算法

Buddy算法的优缺点: 1)尽管伙伴内存算法在内存碎片问题上已经做的相当出色,但是该算法中,一个很小的块往往会阻碍一个大块的合并,一个系统中,对内存块的分配,大小是随机的,一片内存中仅一个小的内存块没有释放,旁边两个大的就不能合并.2)算法中有一定的浪费现象,伙伴算法是按2的幂次方大小进行分配内存块,当然这样做是有原因的,即为了避免把大的内存块拆的太碎,更重要的是使分配和释放过程迅速.但是他也带来了不利的一面,如果所需内存大小不是2的幂次方,就会有部分页面浪费.有时还很严重.比如原来是1024

操作系统原理(二)——内存管理之页面置换算法

页面置换算法 1. 总述 为提高内存利用率,解决内存供不应求的问题,更加合理的使用内存,人们创造了分页式内存抽象.同时有一个虚拟内存的概念,是指将内存中暂时不需要的部分写入硬盘,看上去硬盘扩展了内存的容量,所以叫做“虚拟”内存.使用虚拟内存,应用程序可以使用比实际物理内存更大的内存空间.可以认为这个更大的内存空间就在硬盘上,只有将某一部分需要被用到时,才被写入真实内存:当它暂时不再被用到时,又被写回硬盘.分页式内存管理将物理内存分为等大的小块,每块大小通常为1K.2K.4K等,称为页帧:逻辑内存

Linux 伙伴算法简介

    本文将简要介绍一下Linux内核中的伙伴分配算法. Technorati 标签: 伙伴算法     算法作用      它要解决的问题是频繁地请求和释放不同大小的一组连续页框,必然导致在已分配页框的块内分散了许多小块的空闲页面,由此带来的问题是,即使有足够的空闲页框可以满足请求,但要分配一个大块的连续页框可能无法满足请求.      伙伴算法(Buddy system)把所有的空闲页框分为11个块链表,每块链表中分布包含特定的连续页框地址空间,比如第0个块链表包含大小为2^0个连续的页框

《30天自制操作系统》笔记(07)——内存管理

<30天自制操作系统>笔记(07)--内存管理 进度回顾 上一篇中处理掉了绝大部分与CPU配置相关的东西.本篇介绍内存管理的思路和算法. 现在想想,从软件工程师的角度看,CPU也只是一个软件而已:它的功能就是加载指令.执行指令和响应中断,而响应中断也是在加载指令.执行指令.就像火车沿着一条环形铁轨前进:当中断发生时,就好像铁轨岔口处变轨了,火车就顺着另一条轨迹走了:走完之后又绕回来重新开始.决定CPU是否变轨的,就是CPU里的特定寄存器. 这是题外话,就此为止. 什么是内存管理 假设内存大小是

Linux内存管理6---伙伴算法与slab

1.前言 本文所述关于内存管理的系列文章主要是对陈莉君老师所讲述的内存管理知识讲座的整理. 本讲座主要分三个主题展开对内存管理进行讲解:内存管理的硬件基础.虚拟地址空间的管理.物理地址空间的管理. 本文将主要以X86架构为例来介绍伙伴算法和slab分配 2.伙伴算法概述 块链表 Linux的伙伴算法将所有的空闲页面分成MAX_ORDER+1(MAX_ORDER默认大小为11)个块链表 每个链表中的一个节点指向一个含有2的幂次个页面的块,即页块或简称块 伙伴 大小相同.物理地址连续的两个页块称为伙

自动内存管理算法 &mdash;&mdash; 标记法

最近阅读了<垃圾回收算法手册>这本经典的书籍,借此机会打算写几篇内存管理算法方面的文章,也算是自己的总结吧. -- 题记 自动内存管理系统 自动内存管理主要面临以下三个方面的任务: 1.为新对象分配内存空间 2.确定"存活"对象 3.回收"死亡"对象所占用的内存空间 其中任务1一般称作"自动内存分配"(Memory Allocation ,下文简称 MA),任务2.3便是常说的"垃圾回收器"(Garbage Col

RT-thread内核之小内存管理算法

 一.动态内存管理 动态内存管理是一个真实的堆(Heap)内存管理模块,可以在当前资源满足的情况下,根据用户的需求分配任意大小的内存块.而当用户不需要再使用这些内存块时,又可以释放回堆中供其他应用分配使用.RT-Thread系统为了满足不同的需求,提供了两套不同的动态内存管理算法,分别是小内存管理算法和SLAB内存管理算法.小堆内存管理模块主要针对系统资源比较少,一般用于小于2M内存空间的系统:而SLAB内存管理模块则主要是在系统资源比较丰富时,提供了一种近似多内存池管理算法的快速算法. 两种内

内存管理中一些算法

在内存管理中存在这两类算法:一类是内存分配算法,一类是页面置换算法 内存分配算法:是指怎么从连续的逻辑地址空间上分配内存地址给进程. 常见内存分配算法及优缺点如下: (1)首次适应算法.使用该算法进行内存分配时,从空闲分区链首开始查找,直至找到一个能满足其大小要求的空闲分区为止.然后再按照作业的大小,从该分区中划出一块内存分配给请求者,余下的空闲分区仍留在空闲分区链中. 该算法倾向于使用内存中低地址部分的空闲分区,在高地址部分的空闲分区很少被利用,从而保留了高地址部分的大空闲区.显然为以后到达的

垃圾回收算法手册:自动内存管理的艺术 BOOK

垃圾回收算法手册:自动内存管理的艺术 2016-03-18 华章计算机 内容简介 PROSPECTUS 本书是自动内存管理领域的里程碑作品,汇集了这个领域里经过50多年的研究沉积下来的最佳实践,包含当代最重要的垃圾回收策略与技术,著译双馨. 几乎所有的现代编程语言都采用了垃圾回收机制,因此深入了解此方面内容对于所有开发者而言都大有裨益.对于不同垃圾回收器的工作方式,以及当前垃圾回收器所面临的各种问题,这本权威手册都提供了专业的解答.掌握这方面的知识之后,在面对多种不同的垃圾回收器以及各种调节选项