BZOJ 4034[HAOI2015]树上操作(树链剖分)

Description

有一棵点数为 N 的树,以点 1 为根,且树点有边权。然后有 M 个
操作,分为三种:
操作 1 :把某个节点 x 的点权增加 a 。
操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a 。
操作 3 :询问某个节点 x 到根的路径中所有点的点权和。
Input

第一行包含两个整数 N, M 。表示点数和操作数。接下来一行 N 个整数,表示树中节点的初始权值。接下来 N-1
行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) 。再接下来 M 行,每行分别表示一次操作。其中
第一个数表示该操作的种类( 1-3 ) ,之后接这个操作的参数( x 或者 x a ) 。
Output

对于每个询问操作,输出该询问的答案。答案之间用换行隔开。

Sample Input

5 5

1 2 3 4 5

1 2

1 4

2 3

2 5

3 3

1 2 1

3 5

2 1 2

3 3
Sample Output

6

9

13

HINT

对于 100% 的数据, N,M<=100000 ,且所有输入数据的绝对值都不会超过 10^6 。

题解:很裸的树剖题了……然而竟然因为写错了线段树调了一个多小时……emmm,如果分块是O(nlogn)的就好了┑( ̄Д  ̄)┍

代码如下:

#include<vector>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define lson root<<1
#define rson root<<1|1
#define hi puts("hi");
using namespace std;

struct node
{
    long long l,r,lazy,sum;
} tr[400040];
long long deep[100010],fa[100010],size[100010],son[100010],id[100010],top[100010],w[100010],c[100010],cnt=0;
vector<int> g[100010];

void push_up(int root)
{
    tr[root].sum=tr[lson].sum+tr[rson].sum;
}

void push_down(int root)
{
    int mid=(tr[root].l+tr[root].r)>>1;
    tr[lson].sum+=(mid-tr[root].l+1)*tr[root].lazy;
    tr[lson].lazy+=tr[root].lazy;
    tr[rson].sum+=(tr[root].r-mid)*tr[root].lazy;
    tr[rson].lazy+=tr[root].lazy;
    tr[root].lazy=0;
}

void build(int root,int l,int r)
{
    if(l==r)
    {
        tr[root].l=l;
        tr[root].r=r;
        tr[root].sum=w[l];
        return ;
    }
    tr[root].l=l;
    tr[root].r=r;
    int mid=(l+r)>>1;
    build(lson,l,mid);
    build(rson,mid+1,r);
    push_up(root);
}

void add(int root,int l,int r,int x)
{
    if(l==tr[root].l&&r==tr[root].r)
    {
        tr[root].lazy+=x;
        tr[root].sum+=(tr[root].r-tr[root].l+1)*x;
        return;
    }
    int mid=(tr[root].l+tr[root].r)>>1;
    if(tr[root].lazy)             //
    {
        push_down(root);
    }
    if(l>mid)
    {
        add(rson,l,r,x);            //!!!
    }
    else
    {
        if(r<=mid)
        {
            add(lson,l,r,x);        //!!!
        }
        else
        {
            add(lson,l,mid,x);
            add(rson,mid+1,r,x);
        }
    }
    push_up(root);                //
}

long long query(int root,int l,int r)
{
    if(l==tr[root].l&&tr[root].r==r)
    {
        return tr[root].sum;
    }
    int mid=(tr[root].l+tr[root].r)>>1;
    if(tr[root].lazy)
    {
        push_down(root);            //
    }
    if(l>mid)
    {
        return query(rson,l,r);    //!!!
    }
    else
    {
        if(r<=mid)
        {
            return query(lson,l,r);  //!!!
        }
    }
    return query(lson,l,mid)+query(rson,mid+1,r);
}

void dfs1(int now,int f,int dep)
{
    deep[now]=dep;
    fa[now]=f;
    size[now]=1;
    int maxson=-1;
    for(int i=0;i<g[now].size();i++)
    {
        if(g[now][i]==f)
        {
            continue;
        }
        dfs1(g[now][i],now,dep+1);
        size[now]+=size[g[now][i]];             //
        if(size[g[now][i]]>maxson)
        {
            son[now]=g[now][i];
            maxson=size[g[now][i]];
        }
    }
}

void dfs2(int now,int topf)
{
    id[now]=++cnt;
    w[cnt]=c[now];
    top[now]=topf;
    if(!son[now])
    {
        return ;
    }
    dfs2(son[now],topf);
    for(int i=0;i<g[now].size();i++)
    {
        if(g[now][i]==son[now]||g[now][i]==fa[now])
        {
            continue;
        }
        dfs2(g[now][i],g[now][i]);
    }
}

void point_add(int x,int val)
{
    add(1,id[x],id[x],val);
}

void sub_add(int x,int val)
{
    add(1,id[x],id[x]+size[x]-1,val);
}

void path_sum(int x,int y)
{
    long long ans=0;
    while(top[x]!=top[y])
    {
        if(deep[top[x]]<deep[top[y]])             //
        {
            swap(x,y);
        }
        ans+=query(1,id[top[x]],id[x]);
        x=fa[top[x]];
    }
    if(deep[x]>deep[y])
    {
        swap(x,y);
    }
    ans+=query(1,id[x],id[y]);
    printf("%lld\n",ans);
}

int main()
{
    int n,m,kd,x,a;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++)
    {
        scanf("%lld",&c[i]);
    }
    for(int i=1;i<=n-1;i++)
    {
        int from,to;
        scanf("%d%d",&from,&to);
        g[from].push_back(to);
        g[to].push_back(from);
    }
    dfs1(1,0,1);
    dfs2(1,1);
    build(1,1,n);
    for(int i=1;i<=m;i++)
    {
        scanf("%d",&kd);
        if(kd==1)
        {
            scanf("%d%d",&x,&a);
            point_add(x,a);
        }
        if(kd==2)
        {
            scanf("%d%d",&x,&a);
            sub_add(x,a);
        }
        if(kd==3)
        {
            scanf("%d",&x);
            path_sum(1,x);
        }
    }
}

省选一试爆炸了qwq

原文地址:https://www.cnblogs.com/stxy-ferryman/p/8629556.html

时间: 2024-11-08 02:17:17

BZOJ 4034[HAOI2015]树上操作(树链剖分)的相关文章

bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树

4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 4352  Solved: 1387[Submit][Status][Discuss] Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有

【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树

[BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. Input 第一行包含两个整数 N, M .表示点数和操作数. 接下来一行 N 个整数,表示树中节点的初始权值. 接下来 N-1 行每行三个正整数 fr, to

[HAOI2015]树上操作 -树链剖分

1963. [HAOI2015]树上操作 [题目描述] 有一棵点数为N的树,以点1为根,且树点有权值.然后有M个操作,分为三种: 操作1:把某个节点x的点权增加a. 操作2:把某个节点x为根的子树中所有点的点权都增加a. 操作3:询问某个节点x到根的路径中所有点的点权和. [输入格式] 第一行两个整数N,M,表示点数和操作数. 接下来一行N个整数,表示树中节点的初始权值. 接下来N-1行每行两个正整数fr,to,表示该树中存在一条边(fr,to). 再接下来M行,每行分别表示一次操作.其中第一个

BZOJ 4034 HAOI2015 树上操作

4034: [HAOI2015]树上操作 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 6033  Solved: 1959[Submit][Status][Discuss] Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有

bzoj4034 树上操作 树链剖分+线段树

题目传送门 题目大意: 有一棵点数为 N 的树,以点 1 为根,且树点有权.然后有 M 个操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a . 操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 思路: 由于是在刷dfs序专题的时候碰到这题,所以思路被限制了,没想树链剖分的东西,没能做出来,后来发现了一个 大佬的博客,发现也是可以做的,但是这个做法看不懂...留坑 现在用树链剖分的方法,每个点的权值就是点本身

cogs 1963. [HAOI 2015] 树上操作 树链剖分+线段树

1963. [HAOI 2015] 树上操作 ★★★☆   输入文件:haoi2015_t2.in   输出文件:haoi2015_t2.out   简单对比时间限制:1 s   内存限制:256 MB [题目描述] 有一棵点数为N的树,以点1为根,且树点有权值.然后有M个操作,分为三种: 操作1:把某个节点x的点权增加a. 操作2:把某个节点x为根的子树中所有点的点权都增加a. 操作3:询问某个节点x到根的路径中所有点的点权和. [输入格式] 第一行两个整数N,M,表示点数和操作数. 接下来一

洛谷 P3178 BZOJ 4034 [HAOI2015]树上操作

题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点的点权都增加 a .操作 3 :询问某个节点 x 到根的路径中所有点的点权和. 输入输出格式 输入格式: 第一行包含两个整数 N, M .表示点数和操作数.接下来一行 N 个整数,表示树中节点的初始权值.接下来 N-1 行每行三个正整数 fr, to , 表示该树中存在一条边 (fr, to) .再接下来 M 行

4034: [HAOI2015]树上操作

4034: [HAOI2015]树上操作 链接 思路: 树链剖分.操作:单点修改,路径查询,子树修改. 代码: 1 #include<cstdio> 2 #include<algorithm> 3 #include<cstring> 4 #include<iostream> 5 #include<cmath> 6 #include<cctype> 7 8 using namespace std; 9 10 const int N =

bzoj4034: [HAOI2015]树上操作(树剖)

4034: [HAOI2015]树上操作 题目:传送门 题解: 树剖裸题: 麻烦一点的就只有子树修改(其实一点也不),因为子树编号连续啊,直接改段(记录编号最小和最大) 开个long long 水模版 代码: 1 #include<cstdio> 2 #include<cstring> 3 #include<cstdlib> 4 #include<cmath> 5 #include<algorithm> 6 using namespace std