? 上一篇图像卷积 http://www.cnblogs.com/cuancuancuanhao/p/8535569.html。这篇使用了 OpenCV 从文件读取彩色的 jpeg 图像,进行边缘检测以后写回文件。
● 代码(没有使用局部内存优化)
1 // convolution.cl,核函数,应该和上一篇中无优化内核是一样的 2 __kernel void convolution(__read_only image2d_t sourceImage, __write_only image2d_t outputImage, 3 int rows, int cols, __constant float* filter, int filterWidth, sampler_t sampler) 4 { 5 const int col = get_global_id(0), row = get_global_id(1); // 注意工作项的顺序,图像上是先横着数再竖着数 6 const int halfWidth = (int)(filterWidth / 2); 7 float4 sum = { 0.0f, 0.0f, 0.0f, 0.0f }, pixel; // 输出数据类型是四元浮点数,与 image 统一 8 int i, j, filterIdx; // 传入的卷积窗口是一维的,用一个下标即可遍历 9 int2 coords; 10 for (filterIdx = 0, i = -halfWidth; i <= halfWidth; i++) 11 { 12 coords.y = row + i; // 从 work-item 分到的行号偏移 i 行,作为图像坐标的第二分量 13 for (j = -halfWidth; j <= halfWidth; j++) 14 { 15 coords.x = col + j; // 从 work-item 分到的列号偏移 i 列,作为图像坐标的第一分量 16 pixel = read_imagef(sourceImage, sampler, coords); // 读取源图像上相应位置的值 17 sum.x += pixel.x * filter[filterIdx++]; 18 } 19 } 20 if (row < rows && col < cols) // 将落在有效范围内的计算数据输出 21 { 22 coords.x = col; 23 coords.y = row; 24 write_imagef(outputImage, coords, sum); 25 } 26 return; 27 }
1 // convolution.c,主函数 2 #include <stdio.h> 3 #include <stdlib.h> 4 #include <cl.h> 5 #include <opencv.hpp> 6 #include <D:\Program\OpenCV\build\include\opencv2\core\cvstd.hpp>// 不知道为什么要加这个,否则报错 7 #include <iostream> 8 #include <vector> 9 10 using namespace std; 11 using namespace cv; 12 13 #define CUAN_OPENCL12 14 #ifndef CUAN_OPENCL12 15 #pragma warning(disable : 4996)// 部分函数在 OpenCL2.0 中已经被弃用,需要添加该行以支持老版本中的函数,否则报错,信息举例 "‘clCreateImage2D‘: 被声明为已否决 " 16 #endif 17 18 const char *sourceProgram = "D:\\Code\\OpenCL\\convolution.cl";// 核函数文件 19 20 char* readSource(const char* kernelPath)// 读取文本文件,存储为 char * 21 { 22 FILE *fp; 23 char *source; 24 long int size; 25 printf("readSource, Program file: %s\n", kernelPath); 26 fopen_s(&fp, kernelPath, "rb"); 27 if (!fp) 28 { 29 printf("Open kernel file failed\n"); 30 exit(-1); 31 } 32 if (fseek(fp, 0, SEEK_END) != 0) 33 { 34 printf("Seek end of file faildd\n"); 35 exit(-1); 36 } 37 if ((size = ftell(fp)) < 0) 38 { 39 printf("Get file position failed\n"); 40 exit(-1); 41 } 42 rewind(fp); 43 if ((source = (char *)malloc(size + 1)) == NULL) 44 { 45 printf("Allocate space failed\n"); 46 exit(-1); 47 } 48 fread(source, 1, size, fp); 49 fclose(fp); 50 source[size] = ‘\0‘; 51 return source; 52 } 53 54 int main() 55 { 56 // 卷积窗口相关 57 const int filterWidth = 5, filterSize = filterWidth * filterWidth, halfFilterWidth = filterWidth / 2; 58 float filter[filterSize] = 59 /* 60 {// 恒等映射 61 0, 0, 0, 0, 0, 62 0, 0, 0, 0, 0, 63 0, 0, 1, 0, 0, 64 0, 0, 0, 0, 0, 65 0, 0, 0, 0, 0 66 }; 67 */ 68 {// 边缘检测 69 -3, 0,-1, 0, 2, 70 0,-1, 0, 2, 0, 71 -1, 0, 4, 0,-1, 72 0, 2, 0,-1, 0, 73 2, 0,-1, 0,-3, 74 }; 75 76 // 图片相关 77 Mat image = imread("D:\\1.jpg"); 78 Mat channel[3]; 79 split(image, channel); 80 int imageHeight = image.rows, imageWidth = image.cols; 81 float *imageData = (float*)malloc(sizeof(float) * imageHeight * imageWidth); 82 83 // 准备平台,设备,上下文,命令队列部分 84 cl_int status; 85 cl_platform_id platform; 86 clGetPlatformIDs(1, &platform, NULL); 87 cl_device_id device; 88 clGetDeviceIDs(platform, CL_DEVICE_TYPE_ALL, 1, &device, NULL); 89 cl_context_properties props[3] = { CL_CONTEXT_PLATFORM,(cl_context_properties)(platform), 0 }; 90 cl_context context; 91 context = clCreateContext(props, 1, &device, NULL, NULL, &status); 92 cl_command_queue queue; 93 queue = clCreateCommandQueue(context, device, 0, &status); 94 95 // 设置 image 数据描述符,仅使用 OpenCL1.2 规范 96 cl_image_desc desc; 97 desc.image_type = CL_MEM_OBJECT_IMAGE2D; 98 desc.image_width = imageWidth; 99 desc.image_height = imageHeight; 100 desc.image_depth = 0; 101 desc.image_array_size = 0; 102 desc.image_row_pitch = 0; 103 desc.image_slice_pitch = 0; 104 desc.num_mip_levels = 0; 105 desc.num_samples = 0; 106 desc.buffer = NULL; 107 cl_image_format format; 108 format.image_channel_order = CL_R; 109 format.image_channel_data_type = CL_FLOAT; 110 cl_mem d_inputImage = clCreateImage(context, CL_MEM_READ_ONLY, &format, &desc, NULL, &status); 111 cl_mem d_outputImage = clCreateImage(context, CL_MEM_WRITE_ONLY, &format, &desc, NULL, &status); 112 113 // 卷积窗口缓冲区 114 cl_mem d_filter = clCreateBuffer(context, 0, filterSize * sizeof(float), NULL, &status); 115 116 // 主机数据写入设备 117 size_t origin[3] = { 0, 0, 0 }, region[3] = { imageWidth, imageHeight, 1 };// 偏移量和每个维度上的尺寸 118 clEnqueueWriteBuffer(queue, d_filter, CL_TRUE, 0, filterSize * sizeof(float), filter, 0, NULL, NULL); 119 120 // 创建采样器,规定图像坐标系的类型和访问越界时的解决方案,以及插值方式 121 cl_sampler sampler = clCreateSampler(context, CL_FALSE, CL_ADDRESS_CLAMP_TO_EDGE, CL_FILTER_NEAREST, &status); 122 123 // 程序的运行时编译,创建内核 124 const char* source = readSource(sourceProgram); 125 cl_program program = clCreateProgramWithSource(context, 1, &source, NULL, NULL); 126 clBuildProgram(program, 1, &device, NULL, NULL, NULL); 127 cl_kernel kernel = clCreateKernel(program, "convolution", &status); 128 129 // 声明内核参数 130 clSetKernelArg(kernel, 0, sizeof(cl_mem), &d_inputImage); 131 clSetKernelArg(kernel, 1, sizeof(cl_mem), &d_outputImage); 132 clSetKernelArg(kernel, 2, sizeof(int), &imageHeight); 133 clSetKernelArg(kernel, 3, sizeof(int), &imageWidth); 134 clSetKernelArg(kernel, 4, sizeof(cl_mem), &d_filter); 135 clSetKernelArg(kernel, 5, sizeof(int), &filterWidth); 136 clSetKernelArg(kernel, 6, sizeof(cl_sampler), &sampler); 137 138 // 内核参数 139 size_t globalSize[2] = { imageWidth, imageHeight }; 140 141 int i, j; 142 for (i = 0; i < 3; i++)// 三个通道,分别为蓝、绿、红 143 { 144 // 更新输入缓冲区 145 for (j = 0; j < imageHeight * imageWidth; j++) 146 imageData[j] = (float)channel[i].data[j]; 147 clEnqueueWriteImage(queue, d_inputImage, CL_TRUE, origin, region, 0, 0, imageData, 0, NULL, NULL); 148 149 // 执行内核 150 clEnqueueNDRangeKernel(queue, kernel, 2, NULL, globalSize, NULL, 0, NULL, NULL); 151 152 // 向文件中写入结果 153 clEnqueueReadImage(queue, d_outputImage, CL_TRUE, origin, region, 0, 0, imageData, 0, NULL, NULL); 154 for (j = 0; j < imageHeight * imageWidth; j++) 155 channel[i].data[j] = (imageData[j] < 0 ? 0 : (unsigned char)int(imageData[j])); 156 } 157 158 merge(channel, 3, image); // 三个通道合成 159 imwrite("D:\\2.jpg", image, vector<int>{IMWRITE_JPEG_QUALITY, 95});// 最后一个参数为输出图片的选项,95%质量 160 imshow("merge", image); // 在窗口中展示图片 161 waitKey(0); // 等待键盘输入 162 163 free(imageData); 164 getchar(); 165 return 0; 166 167 }
● 输出结果,感谢助教提供的原图
readSource, Program file: D:\Code\OpenCL\convolution.cl
● 用到 OpenCV 的关键部分
1 #include <opencv.hpp> 2 #include <D:\Program\OpenCV\build\include\opencv2\core\cvstd.hpp>// 不知道为什么要加这个,否则报错 3 #include <iostream> 4 #include <vector> 5 6 { 7 Mat image = imread("D:\\1.jpg"); // 读取图片,OpenCV 自动识别文件类型,返回一个 Mat 类 8 Mat channel[3]; // 分别存放图像的三个通道 9 split(image, channel); // 将原图像拆分为三个通道,分别为蓝色、绿色、红色 10 int imageHeight = image.rows, imageWidth = image.cols;// 获取图像的行数和列数 11 12 float value = (float)channel[0].data[0]; // 获取图像中某一像素的值,注意格式为 unsigned char,注意与 float 之间的转换 13 channel[0].data[0] = (unsigned char)int(value); // float 转回 unsigned char,注意数据范围和四舍五入方向 14 15 merge(channel, 3, image); // 三个通道合成 16 imwrite("D:\\2.jpg", image, vector<int>{IMWRITE_JPEG_QUALITY, 95});// 最后一个参数为输出图片的选项,95% 压缩质量 17 imshow("merge", image); // 在窗口中展示图片 18 waitKey(0); // 等待键盘输入 19 }
原文地址:https://www.cnblogs.com/cuancuancuanhao/p/8870667.html
时间: 2024-10-29 21:02:31