uoj348【WC2018】州区划分

题目链接

直接讲吨吨吨给的标准做法吧。记\(f(i,j)\)表示各个州(可以重叠)的城市数量之和为i,这些州的并集为j的方案数,反正若有两个州之间有交集最后的\(|j|\)会不等于\(i\)。有

\(f(i,s)=\sum_{s1} \sum_{s2}[s1|s2==s] \ f(i-|s2|,s1)*can(s2) (\frac{vals(s2)}{vals(s)})^p\)

\(f(i,s)*vals(s)^p=\sum_j \sum_{|s2|=j} \sum_{s1} [s1|s2==s]\ f(i-j,s1)*can(s2) *vals(s2)^p\)

记\(g(|s|,s)\)表示\(can(s)*vals(s)^p\),先在最开始DWT所有的g,枚举i,j,然后卷一下\(f_{i-j}\)与\(g_j\),只要在dp的过程中一直保持f是已经DWT了的,卷积的复杂度就只有\(O(2^n)\),记得\(f_i\)算完以后要IDWT一下乘上\(vals(s)^{-p}\)再DWT。复杂度\(O(n^22^n)\)

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<vector>
#include<algorithm>
#include<cmath>
#define P puts("lala")
#define cp cerr<<"lala"<<endl
#define ln putchar(‘\n‘)
#define pb push_back
#define fi first
#define se second
#define mkp make_pair
using namespace std;
inline int read()
{
    char ch=getchar();int g=1,re=0;
    while(ch<‘0‘||ch>‘9‘) {if(ch==‘-‘)g=-1;ch=getchar();}
    while(ch<=‘9‘&&ch>=‘0‘) re=(re<<1)+(re<<3)+(ch^48),ch=getchar();
    return re*g;
}
typedef long long ll;
typedef pair<int,int> pii;

const int N=25;
const int mod=998244353;
inline ll qpow(ll a,int n)
{
    ll ans=1;
    for(;n;n>>=1,a=a*a%mod) if(n&1) ans=ans*a%mod;
    return ans;
}

void FWT(int *a,int n,ll f)
{
    for(int step=1;step<n;step<<=1)
        for(int j=0;j<n;j+=(step<<1))
            for(int k=j;k<j+step;++k)
            {
                int x=a[k],y=a[k+step];
                a[k+step]=(y+f*x+mod)%mod;
            }
}

int head[N],cnt=0;
struct node
{
    int to,next;
}e[N*N];
inline void add(int x,int y)
{
    e[++cnt]=(node){y,head[x]}; head[x]=cnt;
    e[++cnt]=(node){x,head[y]}; head[y]=cnt;
}
int val[N],n,m,vals[1<<21|1],deg[N],fa[N];
bool can[1<<21|1];
pii edg[N*N];

inline int find(int x)
{
    if(fa[x]!=x) return fa[x]=find(fa[x]);
    return fa[x];
}

int f[23][1<<21|1],g[23][1<<21|1];
void wj()
{
#ifndef ONLINE_JUDGE
    freopen("walk.in","r",stdin);
    freopen("walk.out","w",stdout);
#endif
}
int main()
{
    wj();
    n=read(); m=read(); int p=read();
    for(int i=1;i<=m;++i)
    {
        int x=read(),y=read();
        add(x,y);
        edg[i]=pii(x,y);
    }
    for(int i=1;i<=n;++i) val[i]=read();
    int tot=1<<n;
    for(int s=0;s<tot;++s)
    {
        int all=0;
        for(int i=1;i<=n;++i) if(s&(1<<i-1)) vals[s]+=val[i],all++;
        vals[s]=qpow(vals[s],p);
        for(int i=1;i<=n;++i) fa[i]=i,deg[i]=0;
        for(int i=1;i<=m;++i) if((s&(1<<edg[i].fi-1))&&(s&(1<<edg[i].se-1)))
        {
            deg[edg[i].fi]++; deg[edg[i].se]++;
            int r1=find(edg[i].fi),r2=find(edg[i].se);
            if(r1!=r2) all--;
            fa[r1]=r2;
        }
        can[s]=1;
        if(all!=1) continue;
        for(int i=1;i<=n;++i) if(s&(1<<i-1))
            if(deg[i]&1) {can[s]=1;break;}
            else can[s]=0;
    }
    f[0][0]=1;
    for(int s=0;s<tot;++s)
        g[__builtin_popcount(s)][s]=can[s]*vals[s],vals[s]=qpow(vals[s],mod-2);

    FWT(f[0],tot,1);
    for(int i=1;i<=n;++i) FWT(g[i],tot,1);
    for(int i=1;i<=n;++i)
    {
        for(int j=1;j<=i;++j)
        {
            for(int k=0;k<tot;++k) f[i][k]=(f[i][k]+1ll*f[i-j][k]*g[j][k])%mod;
        }
        if(!p) continue;
        FWT(f[i],tot,-1);
        for(int k=0;k<tot;++k) f[i][k]=1ll*f[i][k]*vals[k]%mod;
        FWT(f[i],tot,1);
    }
    FWT(f[n],tot,-1);
    printf("%d\n",f[n][tot-1]);
    return 0;
}

原文地址:https://www.cnblogs.com/thkkk/p/8443788.html

时间: 2024-10-09 15:06:25

uoj348【WC2018】州区划分的相关文章

[UOJ#348][WC2018]州区划分

[UOJ#348][WC2018]州区划分 试题描述 小 \(S\) 现在拥有 \(n\) 座城市,第ii座城市的人口为 \(w_i\),城市与城市之间可能有双向道路相连. 现在小 \(S\) 要将这 \(n\) 座城市划分成若干个州,每个州由至少一个城市组成,每个城市在恰好一个州内. 假设小 \(S\) 将这些城市划分成了 \(k\) 个州,设 \(V_i\) 是第 \(i\) 个州包含的所有城市组成的集合. 定义一条道路是一个州的内部道路,当且仅当这条道路的两个端点城市都在这个州内. 如果一

Luogu4221 WC2018州区划分(状压dp+FWT)

合法条件为所有划分出的子图均不存在欧拉回路或不连通,也即至少存在一个度数为奇数的点或不连通.显然可以对每个点集预处理是否合法,然后就不用管这个奇怪的条件了. 考虑状压dp.设f[S]为S集合所有划分方案的满意度之和,枚举子集转移,则有f[S]=Σg[S']*f[S^S']*(sum[S']/sum[S])p (S'?S),其中g[S]为S集合是否合法,sum[S]为S集合人口数之和.复杂度O(3n).这个式子非常显然,就这么送了50分.p这么小显得非常奇怪但也没有任何卵用. 考虑优化.转移方程写

bzoj5153 [Wc2018]州区划分

题目链接 正解:子集和变换. 考场上只会暴力和$p=0$的情况,还只会$O(2^{n}*n^{3})$的. 然而这题题面出锅,导致考场上一直在卡裸暴力,后面的部分分没写了..听$laofu$说$O(2^{n}*n^{3})$可以过.. 所以直接讲正解.. 我们假设每个城市可以在两个不同集合,那么可以把子集卷积变成或卷积. 我们只要记下当前总共有多少个点,于是考虑设$f[i][S]$表示$i$个点,集合为$S$的方案数. 最后的$f[n][all]$就是答案,显然这个状态中的每个城市只会出现一次.

WC2018 州区划分

题目描述: luogu 题解: 设$f[S]$表示选集合$S$时所有满意度乘积之和,$W[S]$表示集合$S$中选中的$w$之和.显然有这样一个式子:$$f[S]= \frac{1}{W[S]^p} \sum\limits_{T \subseteq S}f[T]*W[S-T]^p*[check(S-T)]$$ 后面$check$的意思是判断$S-T$是否合法. 原题义中不合法的条件是存在一条欧拉回路.那么: 若图不连通则不存在. 若一个点的度数是奇数则不存在 单个点一定存在 这样可以$O(2^n

UOJ348. 【WC2018】州区划分

UOJ348. [WC2018]州区划分 http://uoj.ac/problem/348 分析: 设\(g(S)=(\sum\limits_{x\in S}w_x)^p[合法]\) \(f(S)\)表示\(S\)集合内的答案. \(f(S)=\sum\limits_{T\subseteq S,|T|>0}g(T)f(S-T)s(S)\). 这玩意可以使用占位多项式搞搞. 大概就是形如\(f(S)=\sum\limits_{P|Q=S,|P|+|Q|=S}g(P)h(Q)\). 多开一维表示\

UOJ#348. 【WC2018】州区划分

原文链接www.cnblogs.com/zhouzhendong/p/UOJ348.html 前言 第一次知道子集卷积可以自己卷自己. 题解 这是一道子集卷积模板题. 设 $sum[S]$ 表示点集 S 的点权和. 设 $f[S]$ 表示对点集 S 进行州区划分得到的答案,定义 $g[S]$ 在点集 S 合法时为 $(sum[S])^p$,不合法时为 0 . 则 $$f[S] = \frac{1}{(sum[S])^p}\sum_{T\subsetneq S} f[T]g[S-T]$$ 这东西是

UOJ#348 州区划分

解:有一个很显然的状压...... 就设f[s]表示选的点集为s的时候所有方案的权值和. 于是有f[s] = f[s \ t] * (sum[t] / sum[s])P. 这枚举子集是3n的. 然后发现这是子集卷积,参考资料. 于是就FWT搞一下...看代码 1 #include <bits/stdc++.h> 2 3 typedef long long LL; 4 const int N = 30, M = 2100000, MO = 998244353; 5 6 struct Edge {

13- 整数划分插入乘号积最大(四)

/*                                            整数划分(四)时间限制:1000 ms  |  内存限制:65535 KB难度:3 描述 暑假来了,hrdv 又要留学校在参加ACM集训了,集训的生活非常Happy(ps:你懂得),可是他最近遇到了一个难题,让他百思不得其解,他非常郁闷..亲爱的你能帮帮他吗? 问题是我们经常见到的整数划分,给出两个整数 n , m ,要求在 n 中加入m - 1 个乘号,将n分成m段,求出这m段的最大乘积 输入    第

栅格重分类和条件函数均可以实现对流量统计数据进行定义划分

ArcGIS水分分析工具的流向分析是基于D8单流向算法,如果分析使用的DEM存在凹陷点,就会产生汇,导致径流断流从而影响了分析结果.在前面章节<ArcGIS水文分析实战教程(2)ArcGIS水文分析工具的基本原理>中又介绍过D8算法,而<ArcGIS水文分析实战教程(4)地形预处理>章节中笔者也较少过如何创建无凹陷点得DEM数据,在使用流向分析工具之前可以先行阅读. 首先流向分析要使用填洼过的数据,确保DEM数据没有凹陷点.如果数据准备妥当,直接使用水文分析工具箱中的[流向]工具进