tensorflow实现基于LSTM的文本分类方法

tensorflow实现基于LSTM的文本分类方法

作者:u010223750

引言

学习一段时间的tensor flow之后,想找个项目试试手,然后想起了之前在看Theano教程中的一个文本分类的实例,这个星期就用tensorflow实现了一下,感觉和之前使用的theano还是有很大的区别,有必要总结mark一下

模型说明

这个分类的模型其实也是很简单,主要就是一个单层的LSTM模型,当然也可以实现多层的模型,多层的模型使用Tensorflow尤其简单,下面是这个模型的图 
 
简单解释一下这个图,每个word经过embedding之后,进入LSTM层,这里LSTM是标准的LSTM,然后经过一个时间序列得到的t个隐藏LSTM神经单元的向量,这些向量经过mean pooling层之后,可以得到一个向量h,然后紧接着是一个简单的逻辑斯蒂回归层(或者一个softmax层)得到一个类别分布向量。 
公式就不一一介绍了,因为这个实验是使用了Tensorflow重现了Theano的实现,因此具体的公式可以参看LSTM Networks for Sentiment Analysis这个链接。

tensorflow实现

鄙人接触tensor flow的时间不长,也是在慢慢摸索,但是因为有之前使用Theano的经验,对于符号化编程也不算陌生,因此上手Tensorflow倒也容易。但是感觉tensorflow还是和theano有着很多不一样的地方,这里也会提及一下。 
代码的模型的主要如下:

import tensorflow as tf
import numpy as np

class RNN_Model(object):

    def __init__(self,config,is_training=True):

        self.keep_prob=config.keep_prob
        self.batch_size=tf.Variable(0,dtype=tf.int32,trainable=False)

        num_step=config.num_step
        self.input_data=tf.placeholder(tf.int32,[None,num_step])
        self.target = tf.placeholder(tf.int64,[None])
        self.mask_x = tf.placeholder(tf.float32,[num_step,None])

        class_num=config.class_num
        hidden_neural_size=config.hidden_neural_size
        vocabulary_size=config.vocabulary_size
        embed_dim=config.embed_dim
        hidden_layer_num=config.hidden_layer_num
        self.new_batch_size = tf.placeholder(tf.int32,shape=[],name="new_batch_size")
        self._batch_size_update = tf.assign(self.batch_size,self.new_batch_size)

        #build LSTM network

        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_neural_size,forget_bias=0.0,state_is_tuple=True)
        if self.keep_prob<1:
            lstm_cell =  tf.nn.rnn_cell.DropoutWrapper(
                lstm_cell,output_keep_prob=self.keep_prob
            )

        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num,state_is_tuple=True)

        self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32)

        #embedding layer
        with tf.device("/cpu:0"),tf.name_scope("embedding_layer"):
            embedding = tf.get_variable("embedding",[vocabulary_size,embed_dim],dtype=tf.float32)
            inputs=tf.nn.embedding_lookup(embedding,self.input_data)

        if self.keep_prob<1:
            inputs = tf.nn.dropout(inputs,self.keep_prob)

        out_put=[]
        state=self._initial_state
        with tf.variable_scope("LSTM_layer"):
            for time_step in range(num_step):
                if time_step>0: tf.get_variable_scope().reuse_variables()
                (cell_output,state)=cell(inputs[:,time_step,:],state)
                out_put.append(cell_output)

        out_put=out_put*self.mask_x[:,:,None]

        with tf.name_scope("mean_pooling_layer"):

            out_put=tf.reduce_sum(out_put,0)/(tf.reduce_sum(self.mask_x,0)[:,None])

        with tf.name_scope("Softmax_layer_and_output"):
            softmax_w = tf.get_variable("softmax_w",[hidden_neural_size,class_num],dtype=tf.float32)
            softmax_b = tf.get_variable("softmax_b",[class_num],dtype=tf.float32)
            self.logits = tf.matmul(out_put,softmax_w)+softmax_b

        with tf.name_scope("loss"):
            self.loss = tf.nn.sparse_softmax_cross_entropy_with_logits(self.logits+1e-10,self.target)
            self.cost = tf.reduce_mean(self.loss)

        with tf.name_scope("accuracy"):
            self.prediction = tf.argmax(self.logits,1)
            correct_prediction = tf.equal(self.prediction,self.target)
            self.correct_num=tf.reduce_sum(tf.cast(correct_prediction,tf.float32))
            self.accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32),name="accuracy")

        #add summary
        loss_summary = tf.scalar_summary("loss",self.cost)
        #add summary
        accuracy_summary=tf.scalar_summary("accuracy_summary",self.accuracy)

        if not is_training:
            return

        self.globle_step = tf.Variable(0,name="globle_step",trainable=False)
        self.lr = tf.Variable(0.0,trainable=False)

        tvars = tf.trainable_variables()
        grads, _ = tf.clip_by_global_norm(tf.gradients(self.cost, tvars),
                                      config.max_grad_norm)

        # Keep track of gradient values and sparsity (optional)
        grad_summaries = []
        for g, v in zip(grads, tvars):
            if g is not None:
                grad_hist_summary = tf.histogram_summary("{}/grad/hist".format(v.name), g)
                sparsity_summary = tf.scalar_summary("{}/grad/sparsity".format(v.name), tf.nn.zero_fraction(g))
                grad_summaries.append(grad_hist_summary)
                grad_summaries.append(sparsity_summary)
        self.grad_summaries_merged = tf.merge_summary(grad_summaries)

        self.summary =tf.merge_summary([loss_summary,accuracy_summary,self.grad_summaries_merged])

        optimizer = tf.train.GradientDescentOptimizer(self.lr)
        optimizer.apply_gradients(zip(grads, tvars))
        self.train_op=optimizer.apply_gradients(zip(grads, tvars))

        self.new_lr = tf.placeholder(tf.float32,shape=[],name="new_learning_rate")
        self._lr_update = tf.assign(self.lr,self.new_lr)

    def assign_new_lr(self,session,lr_value):
        session.run(self._lr_update,feed_dict={self.new_lr:lr_value})
    def assign_new_batch_size(self,session,batch_size_value):
        session.run(self._batch_size_update,feed_dict={self.new_batch_size:batch_size_value})

模型不复杂,也就不一一解释了,在debug的时候,还是入了几个tensorflow的坑,因此想单独说一下这几个坑。

坑1:tensor flow的LSTM实现 
tensorflow是已经写好了几个LSTM的实现类,可以很方便的使用,而且也可以选择多种类型的LSTM,包括Basic、Bi-Directional等等。 
这个代码用的是BasicLSTM:

 #build LSTM network

        lstm_cell = tf.nn.rnn_cell.BasicLSTMCell(hidden_neural_size,forget_bias=0.0,state_is_tuple=True)
        if self.keep_prob<1:
            lstm_cell =  tf.nn.rnn_cell.DropoutWrapper(
                lstm_cell,output_keep_prob=self.keep_prob
            )
        cell = tf.nn.rnn_cell.MultiRNNCell([lstm_cell]*hidden_layer_num,state_is_tuple=True)
        self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32)
        out_put=[]
        state=self._initial_state
        with tf.variable_scope("LSTM_layer"):
            for time_step in range(num_step):
                if time_step>0: tf.get_variable_scope().reuse_variables()
                (cell_output,state)=cell(inputs[:,time_step,:],state)
                out_put.append(cell_output)

在这段代码里面,tf.nn.rnn_cell.BasicLSTMCell的初始化只需要制定LSTM神经元的隐含神经元的个数即可,然后需要初始化LSTM网络的参数:self._initial_state = cell.zero_state(self.batch_size,dtype=tf.float32),这句代码乍看一下很迷糊,开始并不知道是什么意义,在实验以及查阅源码之后,返现这句话返回的是两个维度是batch_size*hidden_neural_size的零向量元组,其实就是LSTM初始化的c0、h0向量,当然这里指的是对于单层的LSTM,对于多层的,返回的是多个元组。

坑2:这段代码中的zero_state和循环代数num_step都需要制定 
这里比较蛋疼,这就意味着tensorflow中实现变长的情况是要padding的,而且需要全部一样的长度,但是因为数据集的原因,不可能每个batch的size都是一样的,这里就需要每次运行前,动态制定batch_size的大小,代码中体现这个的是assign_new_batch_size函数,但是对于num_step参数却不能动态指定(可能是因为笔者没找到,但是指定tf.Variable()方法确实不行),出于无奈只能将数据集全部padding成指定大小的size,当然既然使用了padding那就必须使用mask矩阵进行计算。

坑3:cost返回non 
cost返回Non一般是因为在使用交叉熵时候,logits这一边出现了0值,因此stack overflow上推荐的一般是:sparse_softmax_cross_entropy_with_logits(self.logits+1e-10,self.target)这样写法

训练and结果

实验背景: 
tensor flow: tensor flow 0.11 
platform:mac OS 
数据集:subject dataset,数据集都经过了预处理,拿到的是其在词表中的索引 
得益于tensorboard各个参数训练过程都可以可视化,下面是实验训练结果:

训练集训练结果: 
 
验证集训练结果 
 
损失函数训练过程 
 
各个参数训练结果: 

最终在测试集上,准确度约为85%,还不错。

比较tensorflow和thenao

tensor flow 和 theano 是最近比较流行的深度学习框架,两者非常相似但是两者又不一样,下面就我个人体验比较下两者的异同。

  1. 难易程度

    就使用难度而言,tensorflow的便易性要远胜于theano,毕竟theano是一堆学者研究出来的,而tensorflow是Google研究出来的,比较面向工业化。tensor flow直接集成了学术界的很多方法,比如像RNN、LSTM等都已经被tensorflow集成了,还有比如参数更新方法如梯度下降、Adadelta等也已经被tensorflow写好了,但是对于theano这个就得自己写,当然难易程度不一样了。

  2. 灵活性

    就灵活性而言,theano是要胜过tensor flow的,正是因为上一点theano的门槛稍高,却也使得theano有着更大的弹性,可以实现自己任意定义的网络结果,这里不是说tensorflow不行,tensorflow也能写,但是使用tensorflow久了之后,写一些自定义的结构能力就会生疏许多,比如修改LSTM内的一些结构。而Theano则没有这个约束。

  3. 容错性 
    我个人觉得theano的容错性是比tensor flow要高的,theano定义变量,只需要制定类型,比如imatrix、ivertor之类的而不用制定任何的维度,只要你输入的数据和你的网络结构图能够对的上的话,就没问题,而tensorflow择需要预先指定一些参数(如上面代码的num_step参数),相比而言,theano的容错能力多得多,当然这样也有坏处,那就是可能对导致代码调试起来比较费劲儿。

代码 
本文的代码可以在这里获得,转载请注明出处。

原文地址:https://www.cnblogs.com/ggzhangxiaochao/p/8733360.html

时间: 2024-08-28 08:17:02

tensorflow实现基于LSTM的文本分类方法的相关文章

基于weka的文本分类实现

weka介绍 参见 1)百度百科:http://baike.baidu.com/link?url=V9GKiFxiAoFkaUvPULJ7gK_xoEDnSfUNR1woed0YTmo20Wjo0wYo7uff4mq_wg3WzKhTZx4Ok0JFgtiYY19U4q 2)weka官网: http://www.cs.waikato.ac.nz/ml/weka/ 简单文本分类实现: 此处文本为已处理好的文本向量空间模型,关于文本特征提取主要是基于TF-IDF算法对已分词文档进行特征抽取,然后基于

NLP文本分类方法汇总

模型: FastText TextCNN TextRNN RCNN 分层注意网络(Hierarchical Attention Network) 具有注意的seq2seq模型(seq2seq with attention) Transformer("Attend Is All You Need") 动态记忆网络(Dynamic Memory Network) 实体网络:追踪世界的状态 参考文献: [1]用深度学习进行NLP文本分类的方法 原文地址:https://www.cnblogs

基于gibbsLDA的文本分类

之前几篇文章讲到了文档主题模型,但是毕竟我的首要任务还是做分类任务,而涉及主题模型的原因主要是用于text representation,因为考虑到Topic Model能够明显将文档向量降低维度,当然TopicModel可以做比这更多的事情,但是对于分类任务,我觉得这一点就差不多了. LDA之前已经说到过,是一个比较完善的文档主题模型,这次试用的是JGibbsLDA开源的LDA代码做LDA的相关工作,简单易用,用法官网上有,也可以自行谷歌. 按照官网上的参数和格式规范,就可以训练生成语料相关的

机器学习实战读书笔记(四)基于概率论的分类方法:朴素贝叶斯

4.1 基于贝叶斯决策理论的分类方法 朴素贝叶斯 优点:在数据较少的情况下仍然有效,可以处理多类别问题 缺点:对于输入数据的准备方式较为敏感 适用数据类型:标称型数据 贝叶斯决策理论的核心思想:选择具有最高概率的决策. 4.2 条件概率 4.3 使用条件概率来分类 4.4 使用朴素贝叶斯进行文档分类 朴素贝叶斯的一般过程: 1.收集数据 2.准备数据 3.分析数据 4.训练算法 5.测试算法 6.使用算法 朴素贝叶斯分类器中的另一个假设是,每个特征同等重要. 4.5 使用Python进行文本分类

第四章:基于概率论的分类方法: 朴素贝叶斯

本章内容□使用概率分布进行分类□学习朴素贝叶斯分类器□解析RSS源数据口使用朴素贝叶斯来分析不同地区的态度 前两章我们要求分类器做出艰难决策,给出“该数据实例属于哪一类”这类问题的明确答案.不过,分类器有时会产生错误结果,这时可以要求分类器给出一个最优的类别猜测结果,同时给出这个猜测的概率估计值.       概率论是许多机器学习算法的基础,所以深刻理解这一主题就显得十分重要.第3章在计算特征值取某个值的概率时涉及了一些概率知识,在那里我们先统计特征在数据集中取某个特定值的次数,然后除以数据集的

用深度学习(CNN RNN Attention)解决大规模文本分类问题 - 综述和实践

转自https://zhuanlan.zhihu.com/p/25928551 近来在同时做一个应用深度学习解决淘宝商品的类目预测问题的项目,恰好硕士毕业时论文题目便是文本分类问题,趁此机会总结下文本分类领域特别是应用深度学习解决文本分类的相关的思路.做法和部分实践的经验. 业务问题描述: 淘宝商品的一个典型的例子见下图,图中商品的标题是"夏装雪纺条纹短袖t恤女春半袖衣服夏天中长款大码胖mm显瘦上衣夏".淘宝网后台是通过树形的多层的类目体系管理商品的,覆盖叶子类目数量达上万个,商品量也

转:文本分类问题

作者:西瓜军团链接:https://www.zhihu.com/question/58863937/answer/166306236来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 一.传统文本分类方法 文本分类问题算是自然语言处理领域中一个非常经典的问题了,相关研究最早可以追溯到上世纪50年代,当时是通过专家规则(Pattern)进行分类,甚至在80年代初一度发展到利用知识工程建立专家系统,这样做的好处是短平快的解决top问题,但显然天花板非常低,不仅费时费力,覆

中文文本分类大概的步骤

文本分类问题:给定文档p(可能含有标题t),将文档分类为n个类别中的一个或多个 文本分类应用:常见的有垃圾邮件识别,情感分析 文本分类方向:主要有二分类,多分类,多标签分类 文本分类方法:传统机器学习方法(贝叶斯,svm等),深度学习方法(fastText,TextCNN等) 文本分类的处理大致分为文本预处理.文本特征提取.分类模型构建等.和英文文本处理分类相比,中文文本的预处理是关键技术. 一.中文分词:针对中文文本分类时,很关键的一个技术就是中文分词.特征粒度为词粒度远远好于字粒度,其大部分

文本分类:survey

作者:尘心链接:https://zhuanlan.zhihu.com/p/76003775 简述 文本分类在文本处理中是很重要的一个模块,它的应用也非常广泛,比如:垃圾过滤,新闻分类,词性标注等等.它和其他的分类没有本质的区别,核心方法为首先提取分类数据的特征,然后选择最优的匹配,从而分类.但是文本也有自己的特点,根据文本的特点,文本分类的一般流程为:1.预处理:2.文本表示及特征选择:3.构造分类器:4.分类. 通常来讲,文本分类任务是指在给定的分类体系中,将文本指定分到某个或某几个类别中.被