为了简化命令行方式运行作业,Hadoop自带了一些辅助类。GenericOptionsParser是一个类,用来解释常用的Hadoop命令行选项,并根据需要,为Configuration对象设置相应的取值。通常不直接使用GenericOptionsParser,更方便的方式是:实现Tool接口,通过ToolRunner来运行应用程序,ToolRunner内部调用GenericOptionsParser。
一、相关的类及接口解释
(一)相关类及其对应关系如下:
关于ToolRunner典型的实现方法
1、定义一个类(如上图中的MyClass),继承configured,实现Tool接口。
2、在main()方法中通过ToolRunner.run(...)方法调用上述类的run(String[]方法)
见第三部分的例子。
(二)关于ToolRunner
1、ToolRunner与上图中的类、接口无任何的继承、实现关系,它只继承了Object,没实现任何接口。
2、ToolRunner可以方便的运行那些实现了Tool接口的类(调用其run(String[])方法,并通过GenericOptionsParser 可以方便的处理hadoop命令行参数。
A utility to help run Tools.
ToolRunner can be used to run classes implementing Tool interface. It works in conjunction with GenericOptionsParser to parse the generic hadoop command line arguments and modifies the Configuration of the Tool.
The application-specific options are passed along without being modified.
3、ToolRunner除了一个空的构造方法以外,只有一个方法,即run()方法,它有以下三种形式:
run
public static int run(Configuration conf, Tool tool, String[] args) throws Exception
- Runs the given Tool by Tool.run(String[]), after parsing with the given generic arguments. Uses
the given Configuration, or builds one if null. Sets the Tool‘s configuration with the possibly modified version of the conf. -
- Parameters:
- conf - Configuration for the Tool.
- tool - Tool to run.
- args - command-line arguments to the tool.
- Returns:
- exit code of the Tool.run(String[]) method.
- Throws:
- Exception
run
public static int run(Tool tool, String[] args) throws Exception
- Runs the Tool with its Configuration. Equivalent to run(tool.getConf(), tool, args).
-
- Parameters:
- tool - Tool to run.
- args - command-line arguments to the tool.
- Returns:
- exit code of the Tool.run(String[]) method.
- Throws:
- Exception
printGenericCommandUsage
public static void printGenericCommandUsage(PrintStream out)
- Prints generic command-line argurments and usage information.
-
- Parameters:
- out - stream to write usage information to.
它们均是静态方法,即可以通过类名调用。
(1)public static int run(Configuration conf,Tool tool, String[] args)
这个方法调用tool的run(String[])方法,并使用conf中的参数,以及args中的参数,而args一般来源于命令行。
(2)public static int run(Tool tool, String[] args)
这个方法调用tool的run方法,并使用tool类的参数属性,即等同于run(tool.getConf(), tool, args)。
(三)关于Configuration
1、默认情况下,hadoop会加载core-default.xml以及core-site.xml中的参数。
Unless explicitly turned off, Hadoop by default specifies two resources, loaded in-order from the classpath:
- core-default.xml : Read-only defaults for hadoop.
- core-site.xml: Site-specific configuration for a given hadoop installation.
2、在程序运行时,可以通过命令行修改参数,修改方法如下
二、示例程序一:呈现所有参数
下面是一个简单的程序:
package org.jediael.hadoopdemo.toolrunnerdemo; import java.util.Map.Entry; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class ToolRunnerDemo extends Configured implements Tool { static { //Configuration.addDefaultResource("hdfs-default.xml"); //Configuration.addDefaultResource("hdfs-site.xml"); //Configuration.addDefaultResource("mapred-default.xml"); //Configuration.addDefaultResource("mapred-site.xml"); } @Override public int run(String[] args) throws Exception { Configuration conf = getConf(); for (Entry<String, String> entry : conf) { System.out.printf("%s=%s\n", entry.getKey(), entry.getValue()); } return 0; } public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new ToolRunnerDemo(), args); System.exit(exitCode); } }
以上程序用于输出上述xml文件中定义的属性。
1、直接运行程序
[[email protected] project]#hadoop jar toolrunnerdemo.jar org.jediael.hadoopdemo.toolrunnerdemo.ToolRunnerDemo
io.seqfile.compress.blocksize=1000000
keep.failed.task.files=false
mapred.disk.healthChecker.interval=60000
dfs.df.interval=60000
dfs.datanode.failed.volumes.tolerated=0
mapreduce.reduce.input.limit=-1
mapred.task.tracker.http.address=0.0.0.0:50060
mapred.used.genericoptionsparser=true
mapred.userlog.retain.hours=24
dfs.max.objects=0
mapred.jobtracker.jobSchedulable=org.apache.hadoop.mapred.JobSchedulable
mapred.local.dir.minspacestart=0
hadoop.native.lib=true
......................
2、通过-D指定新的参数
[[email protected] project]# hadoop org.jediael.hadoopdemo.toolrunnerdemo.ToolRunnerDemo -D color=yello | grep color
color=yello
3、通过-conf增加新的配置文件
(1)原有参数数量
[[email protected] project]# hadoop jar toolrunnerdemo.jar org.jediael.hadoopdemo.toolrunnerdemo.ToolRunnerDemo | wc
67 67 2994
(2)增加配置文件后的参数数量
[[email protected] project]# hadoop jar toolrunnerdemo.jar org.jediael.hadoopdemo.toolrunnerdemo.ToolRunnerDemo-conf /opt/jediael/hadoop-1.2.0/conf/mapred-site.xml |
wc
68 68 3028
其中mapred-site.xml的内容如下:
<?xml version="1.0"?>
<?xml-stylesheet type="text/xsl" href="configuration.xsl"?>
<configuration>
<property>
<name>mapred.job.tracker</name>
<value>localhost:9001</value>
</property>
</configuration>
可见此文件只有一个property,因此参数数量从67个变成了68个。
4、在代码中增加参数,如上面程序中注释掉的语句
static {
Configuration.addDefaultResource("hdfs-default.xml");
Configuration.addDefaultResource("hdfs-site.xml");
Configuration.addDefaultResource("mapred-default.xml");
Configuration.addDefaultResource("mapred-site.xml");
}
更多选项请见第Configuration的解释。
三、示例程序二:典型用法(修改wordcount程序)
修改经典的wordcount程序,参考:Hadoop入门经典:WordCount
package org.jediael.hadoopdemo.toolrunnerdemo; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.conf.Configured; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.input.TextInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat; import org.apache.hadoop.util.Tool; import org.apache.hadoop.util.ToolRunner; public class WordCount extends Configured implements Tool{ public static class WordCountMap extends Mapper<LongWritable, Text, Text, IntWritable> { private final IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String line = value.toString(); StringTokenizer token = new StringTokenizer(line); while (token.hasMoreTokens()) { word.set(token.nextToken()); context.write(word, one); } } } public static class WordCountReduce extends Reducer<Text, IntWritable, Text, IntWritable> { public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } context.write(key, new IntWritable(sum)); } } @Override public int run(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = new Job(conf); job.setJarByClass(WordCount.class); job.setJobName("wordcount"); job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); job.setMapperClass(WordCountMap.class); job.setReducerClass(WordCountReduce.class); job.setInputFormatClass(TextInputFormat.class); job.setOutputFormatClass(TextOutputFormat.class); FileInputFormat.addInputPath(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); return(job.waitForCompletion(true)?0:-1); } public static void main(String[] args) throws Exception { int exitCode = ToolRunner.run(new WordCount(), args); System.exit(exitCode); } }
运行程序:
[[email protected] project]# hadoop fs -mkdir wcin2 [[email protected] project]# hadoop fs -copyFromLocal /opt/jediael/apache-nutch-2.2.1/CHANGES.txt wcin2 [[email protected] project]# hadoop jar wordcount2.jar org.jediael.hadoopdemo.toolrunnerdemo.WordCount wcin2 wcout2