linux MTD系统解析(转)

MTD,Memory Technology Device即内存技术设备,在Linux内核中,引入MTD层为NOR FLASH和NAND FLASH设备提供统一接口。MTD将文件系统与底层FLASH存储器进行了隔离。

如上图所示,MTD设备通常可分为四层,从上到下依次是:设备节点、MTD设备层、MTD原始设备层、硬件驱动层。

Flash硬件驱动层:Flash硬件驱动层负责对Flash硬件的读、写和擦除操作。MTD设备的Nand Flash芯片的驱动则drivers/mtd/nand/子目录下,Nor Flash芯片驱动位于drivers/mtd/chips/子目录下。

MTD原始设备层:用于描述MTD原始设备的数据结构是mtd_info,它定义了大量的关于MTD的数据和操作函数。其中mtdcore.c:  MTD原始设备接口相关实现,mtdpart.c :  MTD分区接口相关实现。

MTD设备层:基于MTD原始设备,linux系统可以定义出MTD的块设备(主设备号31)字符设备(设备号90)。其中mtdchar.c :  MTD字符设备接口相关实现,mtdblock.c : MTD块设备接口相关实现。

设备节点:通过mknod在/dev子目录下建立MTD块设备节点(主设备号为31)MTD字符设备节点(主设备号为90)。通过访问此设备节点即可访问MTD字符设备和块设备

MTD数据结构:

1.Linux内核使用mtd_info结构体表示MTD原始设备,这其中定义了大量关于MTD的数据和操作函数(后面将会看到),所有的mtd_info结构体存放在mtd_table结构体数据里。在/drivers/mtd/mtdcore.c里:

[cpp] view plain copy

print?

  1. struct mtd_info *mtd_table[MAX_MTD_DEVICES];

2.Linux内核使用mtd_part结构体表示分区,其中mtd_info结构体成员用于描述该分区,大部分成员由其主分区mtd_part->master决定,各种函数也指向主分区的相应函数。

[cpp] view plain copy

print?

  1. struct mtd_part {
  2. struct mtd_info mtd;        /* 分区信息, 大部分由master决定 */
  3. struct mtd_info *master;    /* 分区的主分区 */
  4. uint64_t offset;            /* 分区的偏移地址 */
  5. int index;                  /* 分区号 (Linux3.0后不存在该字段) */
  6. struct list_head list;      /* 将mtd_part链成一个链表mtd_partitons */
  7. int registered;
  8. };

mtd_info结构体主要成员,为了便于观察,将重要的数据放在前面,不大重要的编写在后面。

[cpp] view plain copy

print?

  1. struct mtd_info {
  2. u_char type;         /* MTD类型,包括MTD_NORFLASH,MTD_NANDFLASH等(可参考mtd-abi.h) */
  3. uint32_t flags;      /* MTD属性标志,MTD_WRITEABLE,MTD_NO_ERASE等(可参考mtd-abi.h) */
  4. uint64_t size;       /* mtd设备的大小 */
  5. uint32_t erasesize;  /* MTD设备的擦除单元大小,对于NandFlash来说就是Block的大小 */
  6. uint32_t writesize;  /* 写大小, 对于norFlash是字节,对nandFlash为一页 */
  7. uint32_t oobsize;    /* OOB字节数 */
  8. uint32_t oobavail;   /* 可用的OOB字节数 */
  9. unsigned int erasesize_shift;   /* 默认为0,不重要 */
  10. unsigned int writesize_shift;   /* 默认为0,不重要 */
  11. unsigned int erasesize_mask;    /* 默认为1,不重要 */
  12. unsigned int writesize_mask;    /* 默认为1,不重要 */
  13. const char *name;               /* 名字,   不重要*/
  14. int index;                      /* 索引号,不重要 */
  15. int numeraseregions;            /* 通常为1 */
  16. struct mtd_erase_region_info *eraseregions; /* 可变擦除区域 */
  17. void *priv;     /* 设备私有数据指针,对于NandFlash来说指nand_chip结构体 */
  18. struct module *owner;   /* 一般设置为THIS_MODULE */
  19. /* 擦除函数 */
  20. int (*erase) (struct mtd_info *mtd, struct erase_info *instr);
  21. /* 读写flash函数 */
  22. int (*read) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
  23. int (*write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
  24. /* 带oob读写Flash函数 */
  25. int (*read_oob) (struct mtd_info *mtd, loff_t from,
  26. struct mtd_oob_ops *ops);
  27. int (*write_oob) (struct mtd_info *mtd, loff_t to,
  28. struct mtd_oob_ops *ops);
  29. int (*get_fact_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
  30. int (*read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
  31. int (*get_user_prot_info) (struct mtd_info *mtd, struct otp_info *buf, size_t len);
  32. int (*read_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
  33. int (*write_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, u_char *buf);
  34. int (*lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, size_t len);
  35. int (*writev) (struct mtd_info *mtd, const struct kvec *vecs, unsigned long count, loff_t to, size_t *retlen);
  36. int (*panic_write) (struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, const u_char *buf);
  37. /* Sync */
  38. void (*sync) (struct mtd_info *mtd);
  39. /* Chip-supported device locking */
  40. int (*lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
  41. int (*unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
  42. /* 电源管理函数 */
  43. int (*suspend) (struct mtd_info *mtd);
  44. void (*resume) (struct mtd_info *mtd);
  45. /* 坏块管理函数 */
  46. int (*block_isbad) (struct mtd_info *mtd, loff_t ofs);
  47. int (*block_markbad) (struct mtd_info *mtd, loff_t ofs);
  48. void (*unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
  49. unsigned long (*get_unmapped_area) (struct mtd_info *mtd,
  50. unsigned long len,
  51. unsigned long offset,
  52. unsigned long flags);
  53. struct backing_dev_info *backing_dev_info;
  54. struct notifier_block reboot_notifier;  /* default mode before reboot */
  55. /* ECC status information */
  56. struct mtd_ecc_stats ecc_stats;
  57. int subpage_sft;
  58. struct device dev;
  59. int usecount;
  60. int (*get_device) (struct mtd_info *mtd);
  61. void (*put_device) (struct mtd_info *mtd);
  62. };

mtd_info结构体中的read()、write()、read_oob()、write_oob()、erase()是MTD设备驱动要实现的主要函数,幸运的是Linux大牛已经帮我们实现了一套适合大部分FLASH设备的mtd_info成员函数。

如果MTD设备只有一个分区,那么使用下面两个函数注册和注销MTD设备。

[cpp] view plain copy

print?

  1. int add_mtd_device(struct mtd_info *mtd)
  2. int del_mtd_device (struct mtd_info *mtd)

如果MTD设备存在其他分区,那么使用下面两个函数注册和注销MTD设备。

[cpp] view plain copy

print?

  1. int add_mtd_partitions(struct mtd_info *master,const struct mtd_partition *parts,int nbparts)
  2. int del_mtd_partitions(struct mtd_info *master)

其中mtd_partition结构体表示分区的信息

[cpp] view plain copy

print?

  1. struct mtd_partition {
  2. char *name;             /* 分区名,如TQ2440_Board_uboot、TQ2440_Board_kernel、TQ2440_Board_yaffs2 */
  3. uint64_t size;          /* 分区大小 */
  4. uint64_t offset;        /* 分区偏移值 */
  5. uint32_t mask_flags;    /* 掩码标识,不重要 */
  6. struct nand_ecclayout *ecclayout;   /* OOB布局 */
  7. struct mtd_info **mtdp;     /* pointer to store the MTD object */
  8. };
  9. 其中nand_ecclayout结构体:
  10. struct nand_ecclayout {
  11. __u32 eccbytes;     /* ECC字节数 */
  12. __u32 eccpos[64];   /* ECC校验码在OOB区域存放位置 */
  13. __u32 oobavail;
  14. /* 除了ECC校验码之外可用的OOB字节数 */
  15. struct nand_oobfree oobfree[MTD_MAX_OOBFREE_ENTRIES];
  16. };

关于nand_ecclayout结构体实例,更多可参考drivers/mtd/nand/nand_base.c下的nand_oob_8、nand_oob_16、nand_oob_64实例。
MTD设备层:

mtd字符设备接口:

/drivers/mtd/mtdchar.c文件实现了MTD字符设备接口,通过它,可以直接访问Flash设备,与前面的字符驱动一样,通过file_operations结构体里面的open()、read()、write()、ioctl()可以读写Flash,通过一系列IOCTL 命令可以获取Flash 设备信息、擦除Flash、读写NAND 的OOB、获取OOB layout 及检查NAND 坏块等(MEMGETINFO、MEMERASE、MEMREADOOB、MEMWRITEOOB、MEMGETBADBLOCK IOCRL)

mtd块设备接口:

/drivers/mtd/mtdblock.c文件实现了MTD块设备接口,主要原理是将Flash的erase block 中的数据在内存中建立映射,然后对其进行修改,最后擦除Flash 上的block,将内存中的映射块写入Flash 块。整个过程被称为read/modify/erase/rewrite 周期。 但是,这样做是不安全的,当下列操作序列发生时,read/modify/erase/poweroff,就会丢失这个block 块的数据。
MTD硬件驱动层:

Linux内核再MTD层下实现了通用的NAND驱动(/driver/mtd/nand/nand_base.c),因此芯片级的NAND驱动不再需要实现mtd_info结构体中的read()、write()、read_oob()、write_oob()等成员函数。

MTD使用nand_chip来表示一个NAND FLASH芯片, 该结构体包含了关于Nand Flash的地址信息,读写方法,ECC模式,硬件控制等一系列底层机制。

[cpp] view plain copy

print?

  1. struct nand_chip {
  2. void  __iomem   *IO_ADDR_R;     /* 读8位I/O线地址 */
  3. void  __iomem   *IO_ADDR_W;     /* 写8位I/O线地址 */
  4. /* 从芯片中读一个字节 */
  5. uint8_t (*read_byte)(struct mtd_info *mtd);
  6. /* 从芯片中读一个字 */
  7. u16     (*read_word)(struct mtd_info *mtd);
  8. /* 将缓冲区内容写入芯片 */
  9. void    (*write_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
  10. /* 读芯片读取内容至缓冲区/ */
  11. void    (*read_buf)(struct mtd_info *mtd, uint8_t *buf, int len);
  12. /* 验证芯片和写入缓冲区中的数据 */
  13. int     (*verify_buf)(struct mtd_info *mtd, const uint8_t *buf, int len);
  14. /* 选中芯片 */
  15. void    (*select_chip)(struct mtd_info *mtd, int chip);
  16. /* 检测是否有坏块 */
  17. int     (*block_bad)(struct mtd_info *mtd, loff_t ofs, int getchip);
  18. /* 标记坏块 */
  19. int     (*block_markbad)(struct mtd_info *mtd, loff_t ofs);
  20. /* 命令、地址、数据控制函数 */
  21. void    (*cmd_ctrl)(struct mtd_info *mtd, int dat,unsigned int ctrl);
  22. /* 设备是否就绪 */
  23. int     (*dev_ready)(struct mtd_info *mtd);
  24. /* 实现命令发送 */
  25. void    (*cmdfunc)(struct mtd_info *mtd, unsigned command, int column, int page_addr);
  26. int     (*waitfunc)(struct mtd_info *mtd, struct nand_chip *this);
  27. /* 擦除命令的处理 */
  28. void    (*erase_cmd)(struct mtd_info *mtd, int page);
  29. /* 扫描坏块 */
  30. int     (*scan_bbt)(struct mtd_info *mtd);
  31. int     (*errstat)(struct mtd_info *mtd, struct nand_chip *this, int state, int status, int page);
  32. /* 写一页 */
  33. int     (*write_page)(struct mtd_info *mtd, struct nand_chip *chip,
  34. const uint8_t *buf, int page, int cached, int raw);
  35. int     chip_delay;         /* 由板决定的延迟时间 */
  36. /* 与具体的NAND芯片相关的一些选项,如NAND_NO_AUTOINCR,NAND_BUSWIDTH_16等 */
  37. unsigned int    options;
  38. /* 用位表示的NAND芯片的page大小,如某片NAND芯片
  39. * 的一个page有512个字节,那么page_shift就是9
  40. */
  41. int      page_shift;
  42. /* 用位表示的NAND芯片的每次可擦除的大小,如某片NAND芯片每次可
  43. * 擦除16K字节(通常就是一个block的大小),那么phys_erase_shift就是14
  44. */
  45. int      phys_erase_shift;
  46. /* 用位表示的bad block table的大小,通常一个bbt占用一个block,
  47. * 所以bbt_erase_shift通常与phys_erase_shift相等
  48. */
  49. int      bbt_erase_shift;
  50. /* 用位表示的NAND芯片的容量 */
  51. int      chip_shift;
  52. /* NADN FLASH芯片的数量 */
  53. int      numchips;
  54. /* NAND芯片的大小 */
  55. uint64_t chipsize;
  56. int      pagemask;
  57. int      pagebuf;
  58. int      subpagesize;
  59. uint8_t  cellinfo;
  60. int      badblockpos;
  61. nand_state_t    state;
  62. uint8_t     *oob_poi;
  63. struct nand_hw_control  *controller;
  64. struct nand_ecclayout   *ecclayout; /* ECC布局 */
  65. struct nand_ecc_ctrl ecc;   /* ECC校验结构体,里面有大量的函数进行ECC校验 */
  66. struct nand_buffers *buffers;
  67. struct nand_hw_control hwcontrol;
  68. struct mtd_oob_ops ops;
  69. uint8_t     *bbt;
  70. struct nand_bbt_descr   *bbt_td;
  71. struct nand_bbt_descr   *bbt_md;
  72. struct nand_bbt_descr   *badblock_pattern;
  73. void        *priv;
  74. };

最后,我们来用图表的形式来总结一下,MTD设备层、MTD原始设备层、FLASH硬件驱动层之间的联系。

时间: 2024-10-10 17:24:10

linux MTD系统解析(转)的相关文章

Linux MTD系统剖析

MTD,Memory Technology Device即内存技术设备,在Linux内核中,引入MTD层为NOR FLASH和NAND FLASH设备提供统一接口.MTD将文件系统与底层FLASH存储器进行了隔离. 如上图所示,MTD设备通常可分为四层,从上到下依次是:设备节点.MTD设备层.MTD原始设备层.硬件驱动层. Flash硬件驱动层:Flash硬件驱动层负责对Flash硬件的读.写和擦除操作.MTD设备的Nand Flash芯片的驱动则drivers/mtd/nand/子目录下,No

Linux MTD系统剖析【转】

转自:http://blog.csdn.net/lwj103862095/article/details/21545791 MTD,Memory Technology Device即内存技术设备,在Linux内核中,引入MTD层为NOR FLASH和NAND FLASH设备提供统一接口.MTD将文件系统与底层FLASH存储器进行了隔离. 如上图所示,MTD设备通常可分为四层,从上到下依次是:设备节点.MTD设备层.MTD原始设备层.硬件驱动层. Flash硬件驱动层:Flash硬件驱动层负责对F

[转载] Linux/Unix 系统负载原理解析[英文]

PDF下载:http://vdisk.weibo.com/s/cULRe2mYCQsPz/1407491911 [转载] http://yuxu9710108.blog.163.com/blog/static/23751534201022593028822/ CALC_LOAD() calc_load()工作原理 In this two part-series I want to explore the use of averages in performance analysis and ca

Citrix XenApp和XenDesktop 打印系统解析②

三.思杰通用打印解决方案 思杰的通用解决方案推出的时间很久了,在2004年的思杰iForum大会上,Citrix宣布推出通用打印机驱动程序(UPD)并激动的宣布,Citrix已经永久性的解决了打印的问题.但是事实上,激情之后发现其实通用打印机驱动程序也没有彻底的解决打印问题.其实打印问题长久的悬而未决是微软的问题,思杰只是创造了一些工具,从而使得打印更加的轻松. 思杰的通用打印解决方案,采用了Citrix开发的通用驱动程序(UPD)与底层网络基础设施,允许该驱动程序远程操作所有客户端打印机的设置

嵌入式linux面试题解析(二)——C语言部分二

嵌入式linux面试题解析(二)--C语言部分二 1..h头文件中的ifndef/define/endif 的作用?    答:防止该头文件被重复引用. 2.#include 与 #include "file.h"的区别?    答:前者是从Standard Library的路径寻找和引用file.h,而后者是从当前工作路径搜寻并引用file.h. 3.描述实时系统的基本特性    答 :在特定时间内完成特定的任务,实时性与可靠性. 4.全局变量和局部变量在内存中是否有区别?如果有,是

Linux操作系统基础解析之(四)——Linux基本命令剖析(1)

Linux操作系统自从出现以来,就备受关注.但是人们往往会有这样的一个印象:Linux比Windows难.为什么好多人都会有这样的想法呢?很简单,因为Windows是在更早的时候,甚至是大多数国人都没有认识到计算机的时候就已经被安装到X86架构的计算机上了.Microsoft公司寻求Intel公司的技术支持,并且建立合作之后,PC的市场就几乎被这两家公司垄断了.所以,很多人刚刚开始接触并逐渐学会使用计算机,Intel的X86架构的主机,而且这个主机上一般安装的都是Windows操作系统.因此,大

Linux 监控系统---zabbix

监控系统及zabbix基础(一) =========================================================================== 概述: =========================================================================== 监控系统  1.监控系统介绍 ★监控指标: 硬件:如:cpu使用率,内存空间等 软件:软件程序如:nginx,进程数量等 业务:并发在线数量,事物数量等

嵌入式linux面试题解析(一)——ARM部分二

嵌入式linux面试题解析(一)--ARM部分二 1.描述一下嵌入式基于ROM的运行方式基于RAM的运行方式有什么区别. 基于RAM的运行方式:需要把硬盘和其他介质的代码先加载到ram中,加载过程中一般有重定位的操作: 基于ROM:没有上面的操作. 基于ROM:速度较基于RAM的慢,因为会有一个把变量,部分代码等从存储器(硬盘,flash)搬移到RAM的过程:可用RAM资源比基于RAM的多: 基于RAM:速度较基于ROM的快,可用RAM比基于ROM的少,因为所有的代码,数据都必须存放在RAM中.

嵌入式linux面试题解析(三)——Linux应用编程部分一

嵌入式linux面试题解析(三)--Linux应用编程部分一 1.TCP与UDP的区别 TCP:是面向连接的流传输控制协议,具有高可靠性,确保传输数据的正确性,有验证重发机制,不会出现丢失或乱序. UDP:是无连接的数据报服务,不对数据报进行检查与修改,无须等待对方的应答,会出现分组丢失.重复.乱序,但具有较好的实时性,UDP段结构比TCP的段结构简单,因此网络开销也小. 2.流量控制和拥塞控制 拥塞控制    网络拥塞现象是指到达通信子网中某一部分的分组数量过多,使得该部分网络来不及处理,以致